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Abstract

Artemisia annua hot water infusion (tea) has been used in in vitro experiments against P. falciparum malaria
parasites to test potency relative to equivalent pure artemisinin. High performance liquid chromatography (HPLC) and
mass spectrometric analyses were employed to determine the metabolite profile of tea including the concentrations
of artemisinin (47.5±0.8 mg L-1), dihydroartemisinic acid (70.0±0.3 mg L-1), arteannuin B (1.3±0.0 mg L-1), isovitexin
(105.0±7.2 mg L-1) and a range of polyphenolic acids. The tea extract, purified compounds from the extract, and the
combination of artemisinin with the purified compounds were tested against chloroquine sensitive and chloroquine
resistant strains of P. falciparum using the DNA-intercalative SYBR Green I assay. The results of these in vitro tests
and of isobologram analyses of combination effects showed mild to strong antagonistic interactions between
artemisinin and the compounds (9-epi-artemisinin and artemisitene) extracted from A. annua with significant (IC50 <1
μM) anti-plasmodial activities for the combination range evaluated. Mono-caffeoylquinic acids, tri-caffeoylquinic acid,
artemisinic acid and arteannuin B showed additive interaction while rosmarinic acid showed synergistic interaction
with artemisinin in the chloroquine sensitive strain at a combination ratio of 1:3 (artemisinin to purified compound). In
the chloroquine resistant parasite, using the same ratio, these compounds strongly antagonised artemisinin anti-
plasmodial activity with the exception of arteannuin B, which was synergistic. This result would suggest a mechanism
targeting parasite resistance defenses for arteannuin B’s potentiation of artemisinin.
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Introduction

The use of Artemisia annua (Qing Hao) in traditional Chinese
pharmacopeia includes the treatment of fevers and chills [1,2].
In the 1970s, the active principle in the extract was isolated and
identified as artemisinin (1), a sesquiterpene lactone. The
effectiveness of artemisinin is structurally due to the trioxane
pharmacophore and the activation of the compound occurs via
the cleavage of the endoperoxide bridge [3]. The mechanism
for the activation of artemisinins and their interaction with the
parasite are not fully understood. Different but not mutually
exclusive mechanistic models have been proposed with

evidence for and against each model [4]. A number of studies
[5,6] have suggested that artemisinins act by heme dependent
activation of the trioxane bridge in the parasites’ food vacuole
to produce free radicals which then disrupt heme detoxification
and therefore lead to parasite toxicity. This hypothesis and
other alternative mechanisms for the mode of action of
artemisinins have been studied and reviewed by several
authors [3,4,7–13]. Artemisinin and its derivatives have now
been established in various combination therapies (ACTs) as
effective anti-malarial treatments against multidrug-resistant P.
falciparum infection [14,15].
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In some parts of Asia and Africa, a hot water infusion (tea) of
the plant is used as a self-medication for malaria. The use of
tea in this way has raised concern of the possible development
of parasite resistance as a result of un-standardised use of
artemisinin in these tea preparations [16]. Consequently, the
World Heath Organisation (WHO) in a position statement has
called for “extensive fundamental and clinical research” which
demonstrates both efficacy and safety for the use of tea and
other non-pharmaceutical forms of A. annua extract before
recommendation for treating malaria [17].

The recipes in ancient Chinese texts for preparing Qing Hao
extracts for the treatment of fevers include soaking, followed by
wringing or pounding, followed by squeezing the fresh herb
[1,2,18]. In their study, Rath et al. [19] found that adding boiling
water to the leaves, stirring briefly and leaving covered for 10
minutes, then filtering and gently squeezing the leaves to
release residual water gave the best extraction efficiency (86%)
for artemisinin in the preparation, relative to the total amount of
the compound in leaves. In the literature, a range of aqueous
extraction efficiencies (25-90%) has been reported for
artemisinin [19–21]. Due to the differences in the content of
artemisinin in tea preparation, Van der Kooy and Verpoorte [21]
quantified artemisinin in tea prepared by different methods.
They observed that the extraction efficiency is temperature-
sensitive and that efficiencies of above 90% are attainable.

In some studies evaluating the activity of A. annua extracts,
the amount of artemisinin in these extracts cannot fully account
for its effectiveness against Plasmodium parasites in vitro and
in vivo [16,19]. Mouton et al. however did not find any evidence
of improved potency for their extracts relative to the artemisinin
content [22]. Apart from artemisinin, there are around 30 other
sesquiterpenes and over 36 flavonoids identified in the plant
(Figure 1), some of which have shown limited anti-plasmodial
properties [23]. Five flavonoids, including casticin (7), have
been shown to potentiate the activity of artemisinin [24,25].
Interestingly, the potentiating effect of these flavonoids was not
observed with chloroquine (CQ). Billia et al. [26] observed that
although these flavonoids have no effect on hemin
(chloroferriprotoporphyrin IX) themselves, they do catalyse a
reaction between artemisinin and hemin.

Weathers and Towler [27] have shown that poly-
methoxylated flavonoids like casticin are poorly extracted and
unstable in the aqueous tea infusion. This suggests that
compounds other than this class of flavonoids are likely to be
responsible for the reported improvement in the potency of
artemisinin in tea infusion. A recent analysis by Cabonara et al.
[28] of tea prepared from A. annua leaves by infusion in hot
water for 1, 24 and 48 hours, identified a series of caffeoyl and
feruloyl-quinic acids as main components of the infusion,
together with some flavonoids. Chlorogenic or caffeoylquinic
acids (CQAs) are esters of caffeic and quinic acids (Figure 1).
They possess a broad spectrum of pharmacological properties,
including antioxidant, hepato-protectant, antibacterial, anti-
histaminic, chemo-preventive and other biological effects
[29–32].

To our knowledge, only the interactions of artemisinin with
the poorly extracted poly-methoxylated flavonoids found in
Artemisia tea have been studied. This study therefore aims at

understanding other possible interactions and mechanisms
involved in artemisinin activity in the plant extract, and the
effects of these interactions on parasite resistance to
artemisinin.

Materials and Methods

2.1: Chemicals
Reference standards of artemisinin (98%), rosmarinic acid,

caffeic acid and casticin were obtained from Sigma-Aldrich
(Dorset, UK). Dihydroartemisinic acid (> 96%) was purchased
from Apin Chemicals (Oxfordshire, UK). 9-Epi-artemisinin
(98%) was sourced from Sensapharm Ltd (Sunderland, UK).
Artemisitene, artemisinic acid and arteannuin B were kindly
provided by Walter Reed Army Institute of Research
(Washington, DC, USA). The chlorogenic acids (>99%) and
isovitexin (>99%) were obtained from Biopurify (China). LC-MS
grade formic acid in water, acetonitrile and HPLC grade
acetonitrile were obtained from Fisher Scientific (UK). Purified
water (~18 MΩ cm-1) was dispensed from a Milli-Q system
(Millipore, UK).

2.2: Plant materials
High yielding, dried A. annua biomass was obtained from

BIONEXX Madagascar and stored under dark, cool conditions
until use.

2.3: Plant extracts
A. annua tea was prepared according to published methods

with slight modification [1,33]. Briefly, 1 L of boiling water was
added to 5 g of dried plant material, stirred and stored in the
dark for 1 hour. The extract was filtered in vacuo and
lyophilised after freezing to obtain the dried tea extract which
was used in the Plasmodium assays and in metabolite profiling.

2.4: Sample preparation – solubility studies
The solubility of artemisinin, artemisitene and 9-epi-

artemisinin in aqueous solvent at room temperature (22 °C)
was determined by the method employed by Wang et al. [34],
with modifications. A saturated solution was prepared by
dissolving excess amount of the pure (> 99.0%) standard of
each material in 1 mL de-ionised water (MS grade, Brucker,
UK) and vortexed. This suspension was allowed to settle and
the supernatant filtered through a 0.1 µm syringe filter (Fisher
Scientific, UK). Appropriate volume of the filtrate was diluted
with the mobile phase for mass spectrometry (MS/MS)
analysis.

2.5: Mass spectrometry method for artemisinins
The method by Suberu et al. [35] was employed. Briefly, the

MS/MS system was operated with an ESI interface in positive
ionisation mode (ESI+). The cone and desolvation gas flow
rates were set at 45 L h-1 and 800 L h-1, respectively. The MS
parameters were automatically defined using Waters
IntelliStart® software for the tuning and calibration of the
tandem quardrupole analyser (TQD) and subsequently
manually optimized for all analytes. Capillary voltage was set at
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2.8 Kilovolts, collision voltage at 7 volts, source temperature
was 150 °C and cone voltage was set at 24 volts. A multiple

reaction-monitoring (MRM) transition of
283→219+229+247+265, 283→209+219+247+265,

Figure 1.  Structures of some artemisinin related compounds, flavonoids and acids identified in A. annua extract.  
doi: 10.1371/journal.pone.0080790.g001
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281→217+227+245+263 for artemisinin, 9-epi-artemisinin and
artemisitene was employed. Quantification was determined
using MRM modes for the above transitions. The dwell time
was automatically set at 0.161 seconds. Data were acquired by
MassLynx v4.1 software and processed for quantification with
QuanLynx v4.1 (Waters Corp., Milford, MA, USA).

The high performance liquid chromatography (HPLC) system
coupled to the mass spectrometer consisted of a binary pump,
a cooling auto-sampler with an injection loop of 10 µL set at 10
°C. The column heater was set at 30 °C and a Genesis® Lightn
C18 column (100 × 2.1 mm; 4 μm) (Grace, IL, USA) protected
by an Acquity-LC column in-line filter unit (0.2µm in-line frit)
was used for separation of metabolites. The mobile phase
consisted of A: 0.1% formic acid in water and B: 0.1% formic
acid in acetonitrile used in the following gradient: 0–7.00 min,
25-98% B; 7-9.5 min, 98% B; 9.5-10 min, 98-25% B; 10-15
min, 25% B; at a flow rate of 0.4 mL min-1. Weak wash solvent
was 10% acetonitrile, strong and needle wash solvent was a
mixture of acetonitrile, propan-2-ol, methanol and water
(30:30:30:10 v/v/v/v).

2.6: HPLC method for acids and flavonoid
Analysis of acids and flavonoid was performed on an Agilent

1100 series HPLC equipped with a quaternary pump, auto-
sampler, photodiode array (PDA) and a degasser. The
chromatographic method by Carbonara et al. [28] was used in
the analysis with slight modifications. Briefly, the solvent
system consisted of A (0.1% acetic acid, brought to pH 4 with
NaOH) and B (0.1% acetic acid in acetonitrile) using a gradient
elusion of 0-60 min: 12-25% B, 60-80 min: 25-60% B, 80-85
min: 60-100% B. The system was equilibrated back to 12% B
for 5 minutes before the next run. Analytes were separated and
resolved at a flow rate of 1 mL min-1 on a Phenomenex Luna
C18 column (250 mm x 4.60 mm, 5 µm particle size) attached
to a C18 guard column. Detection and quantification was at
310 nm for caffeic acid, chlorogenic acids and isovitexin.
Rosmarinic acid was analysed at 330 nm wavelength.

2.7: Plasmodium assay
Determination of 50% growth inhibitory concentration (IC50)

values of extracts, compounds and combinations against CQ-
sensitive (CQS; HB3) and CQ-resistant (CQR; Dd2) strains of
P. falciparum was performed at Georgetown University,
Washington, DC, USA, using a previously reported protocol
[36] with minor modifications. Typically, test samples were
dissolved in DMSO to give a stock solution, followed by serial
dilution using complete media (RPMI 1640 supplemented with
10% (v/v) type-O+ human serum, 25 mM HEPES (pH 7.4), 23
mM NaHCO3, 11 mM glucose, 0.75 mM hypoxanthine and 20
µg/L gentamicin) to generate working stocks. 100 μL of these
stock solutions were transferred into pre-warmed (37 °C) 96-
well plates. 100 μL of asynchronous parasite culture at 2%
parasitemia, 4% hematocrit was transferred into each drug (A.
annua plant extract) pre-loaded well, for a final 1% parasitemia,
2% hematocrit. The final concentration of DMSO was 2.5%.
Plates were transferred to a gassed (90% N2, 5% O2, 5% CO2)
airtight chamber and incubated at 37 °C for 72 hours. Following
this incubation, 50 μL of 10X SYBR Green I dye (diluted with

complete media from a 10000X concentrate in DMSO) was
added to each well and plates incubated for an additional 1
hour at 37 °C to allow DNA intercalation. Fluorescence was
measured at 530 nm (490 excitation) on a Spectra GeminiEM
plate reader (Molecular Devices, USA). IC50 values were
obtained from sigmoidal curves fit of parasite growth vs. drug
concentration using SigmaPlot 10.0, and are the average of
three replicates. CQ was included as a positive control in the
assay.

2.8: Combination analysis
Interactions between compounds were evaluated by

isobologram analysis [37,38]. Briefly, a master stock solution is
prepared for each compound such that its concentration
following four or five twofold dilutions approximates the IC50.
These stock solutions were mixed at ratios of 0:4, 1:3, 1:1, 3:1
and 4:0 (v/v) to give working combination stocks.
Subsequently, the combination stocks were twofold serially
diluted to generate a full dose concentration range for each v/v
mixture, which were then analysed under standard growth
inhibitory assay conditions (see above) to provide dose
response curves and an IC50, for each component of each v/v
mixture.

2.9: Data analysis for in vitro combination studies
IC50 values for each compound alone and in the combination

were used to calculate FICs (fractional inhibition
concentrations) as described elsewhere [39,40]. The FICs were
summated to obtain the fractional inhibition concentration index
(FICindex) for the combination as in the equation below:

FICindex=FICA+FICB

where:

FICA=
IC50 o f  Drug A in Combination

IC50 o f  Drug A Alone

FICB=
IC50 o f  Drug B in Combination

IC50 o f  Drug B Alone

The following categorisation was used to determine the type
of interactions between compounds evaluated: synergy (FICindex

<0.9), additivity (0.9<FICindex<1.5) and antagonism (FICindex

>1.5) [39,40].

Result and Discussion

3.1: Composition of A. annua tea
Table 1 shows the metabolites in the aqueous extract

analysed by both MS/MS and HPLC methods and their
quantities in milligrams per litre of extract. The compounds
analysed were based on the in extenso analysis by Carbonara
et al. [28], who showed them to be among the major
metabolites (quantitatively) in A. annua tea infusions. Some of
these metabolites (like 3-caffeoylquinic acid) also have
important dietary profiles [41,42]. In addition, artemisinin-
related compounds, which we have previously detected in such
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extracts, were also analysed. The level of artemisinin reported
[2,19,21,28,43] for tea extract is varied and the values obtained
in this study (47.5 mg L-1) are within the reported range. These
could be due to variation in biomass and the tea preparation
method that was employed, but might also be due to
differences in the biomass-to-solvent ratio used. Carbonara et
al. [28] used a solvent to biomass ratio of 26:1 (v/w), while this
study, as well as others [19,21], employed the therapeutically
recommended ratio (200:1, v/w or 5 g L-1) [44].

Dihydroartemisinic acid (4) (70 mg L-1) and arteannuin B (5)
(1.3 mg L-1) are the only biosynthetic precursors of artemisinin
detected in the tea extract using our method [35]. Therefore
artemisinin is the only compound among the metabolites we
analysed in the tea with significant (IC50 <1 μM) anti-plasmodial
activity (Table 2).

3-Caffeoylquinic acid (11) was found to be the most
abundant (72 mg L-1) of the caffeic derivatives (11-17) in the
analysed extract, followed by 3,5-di-caffeoylquinic acid (15) (57
mg L-1). Caffeic acid (10) was the least abundant (0.8 mg L-1) of
the evaluated acids. Isovitexin (8) was the only flavonoid
analysed (105 mg L-1), being relatively abundant in the extract.
Some classes of flavonoids have poor aqueous solubility and
limited profiles of these compounds in aqueous extract have
been reported [27,28]. Lower level of rosmarinic acid (9) (1.1
mg L-1) was detected in our samples, compared to the levels
found by De Magalhaes et al [43]. However, widely different
concentrations of the acid were reported in the cultivars and
samples they analysed. The acid was not detected in the
analysis by Carbonara et al [28]. Van der Kooy and Verpoorte
[21] have also shown that the method employed in preparing
the hot water infusion does affect the amount of artemisinin
and therefore other co-metabolites extracted. These
differences in profiles and concentration levels of metabolites
seem to suggest that composition of prepared tea infusions
differ and is significantly influenced by method of preparation
and the Artemisia cultivar used.

Table 1. Metabolites in the aqueous A. annua extract
analysed by both MS/MS and HPLC methods quantified as
milligrams per litre of tea.

Compound Amount (mg L-1 of tea)*

Artemisinin 47.5±0.8
Arteannuin B 1.3±0.0
Dihydroartemisinic acid 70.0±0.3
Caffeic acid 0.8±0.00
3,5-Di-caffeoylquinic acid 57.0±1.7
3-Caffeoylquinic acid 72.0±1.6
4-Caffeoylquinic acid 20.4±1.6
4,5-Di-caffeoylquinic acid 31.6±4.0
5-Caffeoylquinic acid 9.0±0.7
Isovitexin 105.0±7.2
Rosmarinic acid 1.1±0.0

*. Values are an average of triplicate determinations with ± S.E.M.
doi: 10.1371/journal.pone.0080790.t001

3.2: Anti-plasmodium extracts and bioactive
compounds in A. annua

Table 2 shows IC50 anti-plasmodial values for pure
compounds and extracts of A. annua plant. Between three- and
seven-fold potentiation of artemisinin activity was observed for
A .annua aqueous (tea) extract in CQ-sensitive (HB3) and CQ-
resistant (Dd2) strains respectively. Only artemisitene (3) (IC50,
88.4±9.9/74.1±7.8 nM, HB3/Dd2) and 9-epi-artemisinin (2)
(IC50, 59.2±1.7/62.2±1.0 nM, HB3/Dd2) showed significant anti-
plasmodial activities (IC50 <1 µM) among the artemisinin
biosynthetic precursors evaluated. 9-Epi-artemisinin and
artemisitene respectively showed about one third and one
fourth of the activity of artemisinin. Acton et al. [45] observed a
similarly reduced activity for 9-epi-artemisinin and artemisitene,
compared to artemisinin in D6 and W2 strains of P. falciparum.
Artemisinin has a chiral molecular structure and the bioactivity
of the molecule is influenced by its absolute configuration.

To investigate if solubility of these artemisinin analogues
could be partially responsible for the reduced activity, we
determined the aqueous solubilities of artemisinin, artemisitene
and 9-epi-artemisnin. Table 3 shows the solubility of these
compounds at experimental conditions.

Under these conditions, 9-epi-artemisinin has a higher
solubility, about twice that of artemisinin or artemisitene. The
lower bioactivity could not be explained based on the solubility

Table 2. IC50 of extracts and components of A. annua in
CQ-sensitive (HB3) and resistant (Dd2) strains.

 IC50 (nM)a

Compound/extracts HB3 strain Dd2 strain
Chloroquine (CQ) 21.8 ± 2.4 202.9 ± 10.7
Artemisinin 22.6 ± 0.7 21.2 ± 2.3
Artesunate 8.8 ± 0.3 5.6 ± 0.6
Artemisitene 88.4 ± 9.9 74.1 ± 7.8
9-epi-artemisinin 59.2 ± 1.7 62.2 ± 1.0
Artemisia aqueous extract (Tea)b 7.6 ± 3.4 2.9 ± 0.4
 IC50 (µM)a

Artemisinic acid 77.8 ± 1.5 61.6 ± 7.5
Arteannuin B 3.2 ± 0.1 4.8 ± 0.4
Dihydroartemisinic acid 21.1 ± 0.7 17.7 ± 4.2
Caffeic acid 60.4 ± 4.3 47.5 ± 8.8
3-Caffeoylquinic acid 69.4 ± 6.4 61.4 ± 4.3
4-Caffeoylquinic acid 61.4 ± 4.3 53.6 ± 5.0
5-Caffeoylquinic acid 84.8 ± 6.4 85.3 ± 4.2
3,4-Caffeoylquinic acid 36.2 ± 1.0 49.0 ± 6.8
4,5-Caffeoylquinic acid 29.3 ± 2.4 43.2 ± 4.2
3,4,5-Caffeoylquinic acid 181.4 ± 2.1 88.2 ± 6.2
Rosmarinic acid 65.1 ± 5.0 65.0 ± 7.0
Isovitexin 72.5 ± 6.8 48.1 ± 4.5
Casticin 17.9 ± 4.7 12.2 ± 1.8
a IC50 values are an average of at least three independent measurements each
performed in triplicate, and are shown ± S.E.M of the three independent
experiments. b IC50 of extract determined based on the artemisinin content (i.e.
ART IC50 of extract) see Table 2.
doi: 10.1371/journal.pone.0080790.t002
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data alone, although the experimental data was obtained at 22
°C (Table 3). We do not expect the pattern observed to change
significantly at physiological conditions.

Woerdenbag et al. [46] observed that the anti-cancer activity
of 11-hydroxy-11-epi-artemisinin (C11 in older and C9 in newer
references for the structure) was about threefold less than the
conformer, which is the same threefold difference we observed
in the anti-plasmodial activity for epimerisation at C9 (Table 2).
If the threefold activity difference is consistent regardless of the
differences in molecular targets and effect, this may suggest a
common upstream differentiation point of molecule activation.
The lower activity of 9-epi-artemisinin may therefore be due in
part to a structural conformation that is relatively more difficult
to activate compared to artemisinin.

3.3: Antagonism of artemisinin with biosynthetic
precursors

Figure 2 shows the interaction of artemisitene and 9-epi-
artemisinin with artemisinin and artesunate (6). These
biosynthetic precursors of artemisinin have significant (IC50 <1
µM) anti-plasmodial activities (Table 2). The interaction of
artemisinin with 9-epi-artemisinin and artemisitene was
antagonistic, but the interaction of these compounds with
artesunate was additive in both chloroquine sensitive (HB3)
and resistant (Dd2) strains.

The reason for the observed antagonistic interaction with
artemisinin at the combinations investigated is unclear.
Structurally, artemisinin, 9-epi-artemisinin and artemisitene are
differentiated at C9. The difference from artemisinin is
epimerisation of the methyl group for 9-epi-artemisinin and a
methylene group attached instead for artemisitene (Figure 1).
Given the minor structural differences, it is likely that these
compounds have identical molecular targets and therefore
possibly compete for these when combined. Conversely, due to
the relatively large difference in structure and mass of
artesunate and 9-epi-artemisinin or artemisitene, these
compounds, when combined, may act on the same targets as
well as on different molecular targets with the possibility of
positive polyvalent interaction. Similarly, Wagner [47–49] has
reported an in vitro synergistic inhibitory effect upon combining
ginkgolides A and B from Ginkgo biloba extract for PAF-
induced thrombocyte-aggregation. The difference between
ginkgolide A and B is an oxygen atom (16 Da).

Table 3. Solubility of artemisinin, artemisitene and 9-epi-
artemisinin in water at 22 °C and atmospheric pressure.

Compound Solubility [mg L-1]* at 22 °C
Artemisinin 74.27±2.10
Artemisitene 74.21±2.99
9-Epi-artemisinin 133.08±5.44

*. Values are an average of triplicate determinations with ± S.E.M.
doi: 10.1371/journal.pone.0080790.t003

3.4: Analysis of other combinations
Table 4 shows the interaction of co-metabolites in A. annua

extracts with artemisinin. In the CQ-sensitive (HB3) strain, 3-
caffeoylquinic acid (3CA) showed additive interaction at 1:3
(v/v), which became synergistic at higher ratio of the acid to
artemisinin (1:10, 1:100 v/v). For casticin, the interaction at 1:3
(artemisinin to casticin, v/v) is antagonistic. Synergistic
interaction is however reported [24,25] for combination ratios at
the range of 1:10-1000 (artemisinin to casticin, v/v).

Therefore, using the FIC index of casticin (1.9) as a
benchmark for potential positive interactions, compounds like
isovitexin, caffeic acid and dihydroartemisinic acid that show
antagonistic interactions at 1:3 may also, like casticin, interact
synergistically at a higher ratio. Rosmarinic acid was
synergistic at a 1:3 combination with artemisinin (v/v) and some
chlorogenic acids were additive at this combination also. These
compounds showing positive interactions with artemisinin may
collectively be responsible for the potentiation of artemisinin in
the tea extract. However, arteannuin B and artemisinic acid are
poorly extracted in the aqueous extract.

Casticin and 3-caffeoylquinic acid (3CA) are polyphenolic
compounds that are natural anti-oxidants. Anti-oxidants at
cellular redox sites are considered a “double edged sword”
able to act either as anti-oxidant or pro-oxidant depending on
conditions, such as dosage levels and presence of metal ions
[50,51]. This “double edged sword” characteristic of anti-
oxidant polyphenols could help explain our observation. At a
lower combination with artemisinin, casticin and 3CA were anti-
oxidative towards the ROS and carbon-centred radicals formed
from artemisinin activation and, as a result, countered
artemisinin activity in vitro. Conversely, at a higher
concentration ratio to artemisinin, casticin and 3CA were pro-
oxidative, enhancing the oxidative stress resulting from
artemisinin’s activation, leading to improvement in artemisinin’s
potency. A schematic isobologram to describe the interaction
between an active pharmaceutical ingredient (API) like
artemisinin (A) and synergists like casticin and 3CA (B, non-
API) is shown in Figure 3.

3.5: Possible role of anti-oxidant defence network in
resistance

Rosmarinic acid at the combination ratio evaluated had a
potentiating effect (FICindex 0.89) on artemisinin in the CQ-
sensitive (HB3) strain (Table 4) but this effect was not
reproduced in the resistant (Dd2) strain; rather a strong
antagonistic effect (FICindex 4.95) was observed. The effect of
rosmarinic acid on artemisinin’s ability to mitigate the
resistance mechanism of the parasite could be partly explained
by the finding of Cul et al. [52] and others [53] who observed
that in vitro resistance in P. falciparum is associated with
increased pfmdr-1 copy number and anti-oxidant activity. Some
experiments with rosmarinic acid have reported strong anti-
oxidant activity for the compound that is over three times that of
trolox [54–56]. In the presence of rosmarinic acid, anti-oxidant
activity may further be elevated thereby promoting increased
resistance. A similar trend of activity in sensitive and resistant
parasite strains in combination with artemisinin was observed
for caffeic acid, 4-caffeoyl-quinic acid (12) and isovitexin with
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reported anti-oxidant properties [57–59]. This supports the
possible role of the anti-oxidant defence network in parasite
resistance to artemisinin [60]

3.6: Arteannuin B selectively potentiates the activity of
artemisinin against parasite defence system

Arteannuin B at 3:1 (v/v) combination with artemisinin
showed additive or no interaction (FICindex 1.25) in the CQ-
sensitive strain and a synergistic interaction (FICindex 0.34) in
the resistant parasite strain (Table 4). This is about a three-fold
improvement in artemisinin’s potency against CQ-resistant P.
falciparum. This is not reproduced in the CQ-sensitive strain.
The potentiation of artemisinin by arteannuin B seems to be
selectively directed at the parasites’ chloroquine resistance
mechanism. This combination could therefore help to better
understand the mechanism(s) involved in parasite defence
network. Reproducing this three-fold improvement in potency

with other artemisinin analogues could also help in the
development of therapeutics effective against emerging drug-
resistant strains.

Arteannuin B is an unusual α-methylene-γ-lactone,
transfused via a tertiary hydroxyl group [61]. This structure
could account for its easy fragmentation/ionisation observed in
mass spectrometry and reported facile rearrangement in acidic
conditions [35,62].

4: Conclusions

In this study we examine interactions between artemisinin
and co-metabolites found in A. annua plant extracts for
chloroquine sensitive (CQS; HB3) and resistant (CQR; Dd2) P.
falciparum malarial parasites. The aqueous extract (tea)
showed about three to seven-fold potentiation in the parasite
strains. When pure compounds were combined, 9-epi-

Figure 2.  Isobologram showing the plot of fractional inhibitory concentration (FIC) of 9-epi-artemisinin (EPI) and
artemisitene (ATENE) against FIC of artemisinin (ART) and artesunate (ATSU).  Panel A - interaction of EPI and ATENE with
ART in chloroquine-sensitive (CQS) HB3 strain. Panel B – same as in A but in CQ-resistant (CQR) Dd2 strain. Panel C - interaction
of EPI and ATENE with ATSU in HB3. Panel D – same as C but in Dd2 parasite.
doi: 10.1371/journal.pone.0080790.g002

Anti-Plasmodial Polyvalent Interactions of A.Annua

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e80790



artemisinin and artemisitene interacted antagonistically with
artemisinin at the combinations evaluated. 9-epi-artemisinin

Table 4. Anti-plasmodial interactions of co-metabolites with
artemisinin in CQ-sensitive (HB3) and CQ-resistant (Dd2)
strains.

 HB3 Dd2

Combination FICindex Interaction FICindex Interaction
1:3 ART:CA 1.570 Antagonistic 4.046 Antagonistic
1:3 ART:3CA 1.172 Additive 2.088 Antagonistic
1:10 ART:3CA 0.685 Synergistic 1.087 Additive
1:100 ART:3CA 0.781 Synergistic 1.177 Additive
1:3 ART:4CA 1.088 Additive 4.266 Antagonistic
1:3 ART:5CA 0.928 Additive 2.460 Antagonistic
1:3 ART:34CA 2.253 Antagonistic 4.862 Antagonistic
1:3 ART:35CA 2.312 Antagonistic 4.749 Antagonistic
1:3 ART:45CA 2.315 Antagonistic 4.844 Antagonistic
1:3 ART:TCA 1.220 Additive 3.041 Antagonistic
1:3 ART:ISO 1.534 Antagonistic 4.829 Antagonistic
1:3 ART:CAS 1.921 Antagonistic 3.034 Antagonistic
1:3 ART:ATCID 1.467 Additive 4.152 Antagonistic
1:3 ART:ARTB 1.250 Additive 0.342 Synergistic
1:3 ART:RA 0.890 Synergistic 4.952 Antagonistic
1:3 ART:DHAA 1.801 Antagonistic 2.861 Antagonistic
1:3 ART:ATENE 3.480 Antagonistic 7.002 Antagonistic
ART 1 - 1 -

Art = artemisinin, CA = caffeic acid, 3CA = 3-caffeoylquinic acid, 4CA = 4-
caffeoylquinic acid, 5CA = 5-caffeoylquinic acid, 3,4 CA = 3,4-di-caffeoylquinic
acid, 3,5CA = 3,5-di-caffeoylquinic acid, 4,5CA = 4,5-di-caffeoylquinic acid, TCA =
3,4,5-tri-caffeoylquinic acid, ISO = siovitexin, CAS = casticin, ATCID = artemisinic
acid, ARTB = arteannuin B, RA = rosmarinic acid, DHAA = dihydroartemisinic acid,
ATENE = artemisitene.
doi: 10.1371/journal.pone.0080790.t004

Figure 3.  A schematic isobologram of the interaction of
artemisinin (API) with anti-oxidant synergist (Non-API).  
doi: 10.1371/journal.pone.0080790.g003

and artemisitene were the only artemisinin-related metabolites
with significant anti-plasmodial activity (IC50 <1 μM) among
those evaluated. In CQS parasites, caffeic acids and their
chlorogenic acid derivatives showed additive interactions with
artemisinin at the combination ratio evaluated. 3-Caffeoylquinic
acid’s interaction with artemisinin turned synergistic with the
increased ratio of the former in the combination. Rosmarinic
acid showed synergistic interaction with artemisinin in the drug
sensitive strain but the interaction with artemisinin in the drug
resistant strain was strongly antagonistic at the same level of
combination. This antagonistic interaction in CQR parasites
was also observed for caffeic acid and some of its derivatives
known to have anti-oxidant properties. The observation
supports literature evidence [52,53] for a potential role of anti-
oxidants in parasite drug resistance. Therefore the effect of
dietary anti-oxidants on artemisinin combination therapies used
in the management of drug resistant P. falciparium malaria may
need to be further investigated.

Arteannuin B was found to selectively potentiate the activity
of artemisinin in Dd2 parasites, suggesting some interaction
with the CQR mechanism, since the potentiation of artemisinin
by arteannuin B was not reproduced in CQS parasites. As a
result of this specificity, arteannuin B could potentially be used
as a probe to better understand parasite drug resistance
mechanisms and the combination might prove useful for
treating CQR strains of malaria.
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