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Background: The aim of our experiments was to investigate the anti-inflammatory properties of casticin and
chrysosplenol D, two flavonoids present in Artemisia annua L.
Methods: Topical inflammation was induced in ICRmice using croton oil. Mice were then treatedwith casticin or
chrysosplenol D. Cutaneous histological changes and edema were assessed. ICR mice were intragastrically ad-
ministrated with casticin or chrysosplenol D followed by intraperitoneal injection of lipopolysaccharide (LPS).
Mouse Raw264.7 macrophage cells were incubated with casticin or chrysosplenol D. Intracellular phosphoryla-
tion was detected, and migration was assessed by trans-well assay. HT-29/NFκB-luc cells were incubated with
casticin or chrysosplenol D in the presence or absence of LPS, and NF-κB activation was quantified.
Results: In mice, administration of casticin (0.5, 1 and 1.5 μmol/cm2) and chrysosplenol D (1 and 1.5 μmol/cm2)
inhibited croton oil-induced ear edema (casticin: 29.39–64.95%; chrysosplenol D: 37.76–65.89%, all P b 0.05)
in a manner similar to indomethacin (0.5, 1 and 1.5 μmol/cm2; 55.63–84.58%). Casticin (0.07, 0.13 and
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0.27 mmol/kg) and chrysosplenol D (0.07, 0.14 and 0.28 mmol/kg) protected against LPS-induced systemic in-
flammatory response syndrome (SIRS) in mice (all P b 0.05), in a manner similar to dexamethasone
(0.03 mmol/kg). Casticin and chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1,
inhibited cellmigration, and reduced LPS-induced IκB and c-JUNphosphorylation inRaw264.7 cells. JNK inhibitor
SP600125 blocked the inhibitory effect of chrysosplenol D on cytokine release.
Conclusions: The flavonoids casticin and chrysosplenol D from A. annua L. inhibited inflammation in vitro and
in vivo.
 R © 2015 Published by Elsevier Inc.
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Introduction

Artemisia annua L. (Qinghao) is an annual herb native to China and it
grows naturally as a part of steppe vegetation at 1000–1500 m above
sea level. It is also calledwormwood, Chinesewormwood, sweetworm-
wood, annualmugwort, and sweet sagewort. Among the herbal extracts
of A. annua L., artemisinin has been identified as having effects against
parasitemia. A series of potent anti-malarial derivativeswere developed
from artemisinin including dihydroartemisinin, which is currently
widely used as an anti-malarial drug (Krishna et al., 2008, 2010; Ding
et al., 2011; Tu, 2011). Over the past decade, artemisinins from
A. annua L. have been used in the treatment of not only malaria (Ho
et al., 2014), but also cancers (Berger et al., 2005; Krishna et al., 2008;
Ferreira et al., 2010; He et al., 2010; Aung et al., 2011), viruses (Deng
et al., 1992; Romero et al., 2005; Rocha Martins et al., 2011) and other
parasite-related infections (Shuhua et al., 2000; Tang et al., 2000; Galal
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noids casticin and chrysosplen
oi.org/10.1016/j.taap.2015.04
et al., 2005; Seif el-Din et al., 2011). Artemisinins have been reported
to alleviate the symptoms of autoimmune diseases (Jin et al., 2009;
Shakir et al., 2011; Ho et al., 2012; Li et al., 2013), allergic disorders
(Chen and Maibach, 1994; Mohapatra et al., 2009; Cheng et al., 2013)
and septic inflammation (Li et al., 2008, 2010; Jiang et al., 2011). Our
preliminary experiments indicated that Arteannuin B and the flavo-
noids casticin and chrysosplenol D suppressed the lipopolysaccharide
(LPS)-induced production of nitric oxide (NO), prostaglandin E2
(PGE2) and proinflammatory cytokines like TNF-alpha, IL-1 beta and
IL-6 in both rat peritoneal cells and human peripheral blood mononu-
clear cells (Zhu et al., 2013). The capacity to inhibit mediators of angio-
genesis may explain the anticancer activity of A. annua L. (Zhu et al.,
2013).

The flavonoids present in A. annua L. are also reported to have signif-
icant pharmacological activities including antitumor and antibacterial
activities that contribute to the therapeutic effects of the herb (Zheng,
1994; Ferreira et al., 2010). Previous studies have reported that casticin
and chrysosplenol D isolated from A. annua L. increased DPPH x scav-
enging (Luo et al., 2013). Casticin and chrysosplenol D isolated from
ol D from Artemisia annua L. inhibit inflammation in vitro and in vivo,
.005
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t1:1Table 1
t1:2Topical anti-inflammatory activity of casticin and chrysosplenol D from Artemisia annua L.
t1:3(n = 10).

t1:4Test substance Dose Edema Inhibition ID50

t1:5(μmol/cm2) (μg/cm2) (mg) (%) (μmol/cm2)

t1:6Control – – 15.89 ± 2.31
t1:7Casticin 0.5 187 11.22 ± 4.03* 29.39 1.16
t1:81 374 10.44 ± 3.37* 34.30
t1:91.5 561 5.50 ± 2.03** 64.95
t1:10Chrysosplenol

D
0.5 180 12.30 ± 1.82 22.59 1.12

t1:111 360 9.89 ± 2.82** 37.76
t1:121.5 540 5.42 ± 2.15** 65.89
t1:13Indomethacin 0.5 179 7.05 ± 1.84** 55.63 0.41
t1:141 358 3.56 ± 1.17** 77.60
t1:151.5 716 2.45 ± 0.94** 84.58

t1:16Note: *P b 0.05, **P b 0.01 vs. controls (ANOVA).
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Vitex negundo or Achillea millefolium have been reported to reduce the
proliferation and growth of cancer cells and were recommended as
promising anti-cancer agents (Li et al., 2005; Csupor-Loffler et al.,
2009; Awale et al., 2011). Casticin isolated from Fructus viticis also
inhibited acute inflammation in a mouse model (Lin et al., 2007) and
could induce cancer cell apoptosis (Chen et al., 2011; Kikuchi et al.,
2013; Zhou et al., 2013; Liu et al., 2014). Casticin from Vitex agnus-
castus exhibited a potent lipoxygenase inhibition (Choudhary et al.,
2009), and also inhibited monocyte oxidative burst and suppressed
the chemotaxic activity of N-formyl-L-leucyl-L-phenylalanine-stimulat-
ed neutrophils as well as phytohemagglutinin stimulated peripheral
blood mononuclear cells (Mesaik et al., 2009).

In this study, we sought to investigate the anti-inflammatory prop-
erties of casticin and chrysosplenol D isolated from A. annua L. in a
mouse model of local cutaneous inflammation and systemic inflamma-
tory response syndrome (SIRS).

We also tried to explore the mechanisms underlying the functions
of these flavonoids using mouse Raw264.7 macrophage cells. This
study underlines the potentially therapeutically important anti-
inflammatory activities of casticin and chrysosplenol D.

Methods

Croton oil-induced ear dermatitis and edema in mice. Forty 4-week old
male ICR mice weighing 20–24 g were supplied by the Laboratory Ani-
mal Center of the Academy of Military Medical Sciences. Topical inflam-
mation was induced on the surface of the right ear (about 1 cm2) by
applying 80 μg of croton oil (Sigma) dissolved in 15 μL of acetone, as pre-
viously described (Baumgartner et al., 2011). Groups of mice (n = 10/
group) received no treatment, casticin (1 μmol/cm2), chrysosplenol D
(1 μmol/cm2) or the nonsteroidal anti-inflammatory drug (NSAID) in-
domethacin (1 μmol/cm2). These compoundswere dissolved in acetone
at the indicated concentrations and applied to the same site as the cro-
ton oil. The left ear remained untreated. Mice were sacrificed after 6 or
12 h, and a 6-mm punch was taken from both ears. All animal experi-
ments compliedwith the guidelines of the PekingUniversity Health Sci-
ence Center Animal Research Committee (Protocol: SYXK JUN
2007–004).
U
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E

Fig. 1.Histological characteristics ofmouse ears 6 h after the induction of croton oil dermatitis. M
E). Application of 1 μmol/cm2 of casticin (C); 1 μmol/cm2 of chrysosplenol D (D); or 1 μmol/cm2

ing, 200× magnification.
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OEvaluation of the edematous response. Edema was quantified by the dif-
ference in weight between punch samples taken from the treated and
untreated ears. Anti-edema activity was expressed as percent inhibition
of the edematous response in animals treated with the test substances
compared with edema in model animals treated with irritant alone, as
previously described (Gomig et al., 2008; Baumgartner et al., 2011). De-
velopment of edema over 12 h was quantified by calculating the areas
under the curves (AUCs) and, subsequently, the ratio between the
AUCs of these animals and the AUCs of controls.

Histological analysis. Ear biopsies were fixed in 10% formalin,
dehydrated in ascending grades of ethanol, cleared in xylene, and em-
bedded in paraffin. Sections (10 μm) were stained with hematoxylin–
eosin and evaluated using a light microscope (Olympus).

Lipopolysaccharide (LPS)-induced systemic inflammatory response syn-
drome (SIRS) in mice. LPS was used to induce SIRS (Gosemann et al.,
2012). Ninety 10–12-week old ICR mice were purchased from Peking
University Medical Department (protocol: SCXK2006–0008) and re-
ceived an intragastric gavage of 0.9% saline (10 mL/kg) containing
casticin at 0.07, 0.13 or 0.27 mmol/kg, chrysosplenol D at 0.07, 0.14 or
ouse earswere untreated (A), or croton oilwas applied topically to induce dermatitis (B to
of indomethacin (E) improved croton-oil induced dermatitis. Hematoxylin andeosin stain-

nol D from Artemisia annua L. inhibit inflammation in vitro and in vivo,
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Fig. 2. Effect of casticin, chrysosplenol D and indomethacin on the time course of the
edematous response up to 12 h (■model; ▲1 μmol/cm2 of casticin; ◆1 μmol/cm2 of
chrysosplenol D; ●1 μmol/cm2 of indomethacin). *P b 0.05, **P b 0.01 vs. models
(ANOVA). Each point represents the mean of the results from 10 mice.
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t3:1Table 3
t3:2The inhibitory effects of casticin and chrysosplenol D on TNF-alpha and IL-1 beta produc-
t3:3tion by LPS on the systemic inflammatory response in mice.

t3:4Group N Dose TNF-alpha IL-1 beta

t3:5(mmol/kg) (mmol/L) (mmol/L)

t3:6Control 10 – 0.11 ± 0.08** 10.44 ± 1.83*
t3:7Model 10 – 0.21 ± 0.04 17.61 ± 5.69
t3:8Casticin 10 0.07 0.19 ± 0.06 10.43 ± 2.34*
t3:910 0.13 0.19 ± 0.08 9.25 ± 2.31**
t3:1010 0.27 0.18 ± 0.11 9.89 ± 1.84**
t3:11Chrysosplenol D 10 0.07 0.20 ± 0.06 13.01 ± 1.87
t3:1210 0.14 0.22 ± 0.04 10.08 ± 2.27*
t3:1310 0.28 0.22 ± 0.09 9.80 ± 2.31**
t3:14Dexamethasone 10 0.03 0.16 ± 0.08* 8.52 ± 4.07**

t3:15Note: *P b 0.05, **P b 0.01 vs. controls (ANOVA).
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0.28 mmol/kg, dexamethasone (0.03 mmol/kg) daily continuously for
7 days, or no treatment (10 mice/group). One hour after the last
intragastric gavage, mice were injected intraperitoneally with 10 mL/
kg LPS (Escherichia coli, 0111:B4, Sigma, 6 mg/kg) (Gosemann et al.,
2012) dissolved in 0.9% saline. Body temperature and respiratory rate
were monitored for 4 h before and after LPS injection. Thereafter, mice
were sacrificed, and serum levels of IL-1 beta and tumor necrosis factor
(TNF)-alpha were measured by ELISA (Rapidbio, CA, USA).

Cell culture. HUVEC cells were purchased from Sciencell Inc. (CA, USA).
Raw264 cells were purchased from the American Typical Collection
Center (Maryland, USA). The human colorectal adenocarcinoma cell
line HT-29, stably transfected with a NF-κB luciferase reporter (HT-29/
NFκB-luc cells), was provided by Professor Zhuo-yu Li of the Institute
of Biotechnology, Key Laboratory of Chemical Biology andMolecular En-
gineering of National Ministry of Education, Shanxi. All cells were cul-
tured in RPMI1640 supplemented with 10% FBS (Invitrogen, Carlsbad,
CA, USA), 100 U/mL of penicillin and 100 μg/mL of streptomycin at
37 °C in a humidified atmosphere of 5% CO2.

MTT cell viability assay. Cell viability was determined using aMTT assay.
Cells were plated in 96-well plates at 5000 cells/well with the indicated
additives. After 24 h, 10 μL of MTT (Sigma) was added in each well and
cell viabilitywas determined after 4 h by the OD570 values for eachwell.

Transwell cell migration assay. Raw264.7 cells were labeled with a fluo-
rescent dye, 3′-O-Acetyl-2′,7′-bis(carboxyethyl)-4 or 5-
carboxyfluorescein, diacetoxymethyl ester (BCECF-AM, Dojindo Molec-
ular, Japan), by incubating 2.0 × 106 cells in 4 mL of IMDM (containing
10% FCS and 40 μL of BCECF-AM to achieve a final BCECF-AM concentra-
tion of 10 μM) at 37 °C for 1 h. Dye loadingwas stopped by adding 4mL
of cold IMDM containing 10% FCS to the suspension and rinsing.
U
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Table 2
Casticin and chrysosplenol ameliorate LPS-induced hypothermia and respiratory symp-
toms in a mouse model of SIRS.

Group N Dose
mmol/kg

Body temperature change (°C) Respiratory
rate
(breaths/min)

Control – −0.12 ± 0.43** 159 ± 14**
Model 10 – −2.21 ± 1.94 122 ± 12
Casticin 10 0.07 −0.62 ± 0.70* 151 ± 13**

10 0.13 −0.80 ± 0.54* 147 ± 7**
10 0.27 −0.37 ± 0.92* 157 ± 10**

Chrysosplenol D 10 0.07 −0.38 ± 0.66* 149 ± 23**
10 0.14 −0.62 ± 0.71* 150 ± 6**
10 0.28 −0.57 ± 0.92* 152 ± 9**

Dexamethasone 10 0.03 −0.80 ± 1.02* 152 ± 7**

Note: **P b 0.01 vs. controls (ANOVA).
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OFluorescence-labeled cells were resuspended in 4 mL of IMDM contain-
ing 10% FCS and prepared for use in migration experiments.

Transwell chambers (8 μm pore size) (BD Falcon, New Jersey, USA)
were used for migration assay. Cells were cultured in FBS-free RPMI-
1640 (Invitrogen, Carlsbad, CA, USA) for 24 h. BCECF-AM-labeled cells
(1 × 105) were seeded onto the upper chamber and then inserted into
a 24-well plate. The upper chamber contained serum-free medium
and the lower chambers contained culture medium. After 24 h, the
number of cells remaining in the upper chamber were collected by
swabbing, rinsed with PBS, and counted by a fluorescence microscope
(Olympus, Tokyo, Japan) using a fluorescence plate reader at excita-
tion/emission wavelengths of 485/535 nm.

Cytokine assays. Raw264.7 cells were plated at 2 × 105 cells per well in
24-well plates and pretreated with casticin or chrysosplenol D (1, 5
and 10 μM) for 4 h before exposure to LPS (200 ng/mL). After 20 h,
the concentrations of IL-1 beta, MCP-1 and IL-6 in the cell culture super-
natant were measured by ELISA according to the manufacturer's in-
structions (Rapidbio, CA, USA).

Bio-Plex phosphoprotein assay. Raw264.7 cells (1.5 × 105/mL) were
treated with LPS (200 ng/mL) for 2 h. Then, protein lysates were pre-
pared using the Cell lysis kit (Bio-Rad). The presence of p-IκB, p-ERK1/
2, p-p38 MAPK, p-Stat3, p-MEK and p-c-JUN was detected using the
Bio-Plex 6-plex phosphoprotein assay kit (Bio-Rad Laboratories Inc.,
Hercules, USA) and the Phosphoprotein Testing Reagent kit (Bio-Rad),
according to the manufacturer's protocol. Data from the reaction was
then acquired and analyzed using the Bio-Plex suspension array system
(Bio-Plex 200 reader).

To test whether activation of the c-JUN pathwaywas involved in the
anti-inflammatory effects of chrysosplenol D, RAW264.7 cells
pretreated with 20 nM of the JNK inhibitor SP600125 (Calbiochem,
SanDiego, CA),were subjected to the previously described experiments,
and cytokine release was quantified after the addition of LPS.

NF-κB transactivation activity. HT-29/NFκB-luc cells were maintained at
37 °C and 5% CO2 in DMEM with phenol red supplemented with 2 mM
glutamine, 100 U/mL benzylpenicillin, 100 μg/mL streptomycin, and
10% fetal bovine serum. HT-29/NFκB-luc cells were seeded in 96-well
plates and incubated at 37 °C and 5% CO2 overnight. On the next day,
the medium was replaced with serum-free DMEM and the indicated
concentrations of casticin or chrysosplenol D were added. One hour
after treatment, the cells were stimulated with 20 ng/mL of LPS for
2 h. After lysis, firefly luciferase and ZSGreen fluorescence were quanti-
fied on a GeniosProplate reader (Tecan, Austria). The luciferase signal
derived from the NF-κB reporter was normalized to the ZSGreen-
derived fluorescence to account for differences in cell numbers or trans-
fection efficiency.
ol D from Artemisia annua L. inhibit inflammation in vitro and in vivo,
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Fig. 3. The inhibitory effects of casticin and chrysosplenol D on cell viability measured by MTT assay. Raw264.7 cells were treated with casticin or chrysosplenol D. Data represents the
mean ± SD from three separate experiments *P b 0.05, **P b 0.01, ***P b 0.001 vs. vehicle-treated control.
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Statistical analysis. The results shown in each figure are expressed as ar-
ithmetic mean± SD. Data analysis was performed using one-way anal-
ysis of variance (ANOVA) with Dunnett's multiple comparison post hoc
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Fig. 4. Casticin and chrysosplenol D inhibits LPS-mediated IL-1 beta, IL-6 and MCP-1 pro-
duction in Raw264.7 cells. RAW264.7 cells were pretreated for 4 h with casticin or
chrysosplenol D at 1, 5 or 10 μM. Cytokine concentrations were evaluated after 20 h in
the presence of LPS by ELISA. Data are presented as themean values of six independent ex-
periments; bars represent mean± SD. *P b 0.05, **P b 0.01, ***P b 0.001 vs. the LPS group.
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test using GraphPad Prism. P-values b 0.05 were considered statistically
significant. All experiments were repeated at least three times.
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A. annua L. flavonoid casticin and chrysosplenol D reduce croton oil-
induced dermatitis and edema

Croton oil induced dermatitis, and dilated blood vessels and dermal
swelling were observed after 6 h (Fig. 1B). To assess the anti-
inflammatory properties of casticin and chrysosplenol D, these com-
pounds were applied topically to the previously described mouse
model of local inflammation at 1 μmol/cm2. After 6 h, reduced inflam-
mation was observed in the ears of mice treated with casticin or
chrysosplenol D (Figs. 1D to E). Similarly, ear tissues from mice treated
with indomethacin (1 μmol/cm2) revealed attenuation of all the vascu-
lar and cellular signs of inflammation (Fig. 1F).

The flavonoids and indomethacin significantly reduced the edema-
tous response. To evaluate the anti-inflammatory potency of the isolat-
ed compounds, ID50 values were assessed. Casticin and chrysosplenol D
showed ID50 values in the range 1.12–1.27 μmol/cm2, which were
higher than indomethacin (ID50 0.41 μmol/cm2) (Table 1).

The anti-inflammatory activities of casticin and chrysosplenol D at
1 μmol/cm2, a dose leading to about 50% edema reduction at 6 h, were
investigatedwith regard to edema development up to 12 h after derma-
titis induction andwere compared with indomethacin (Fig. 1). Local in-
flammation models developed an edematous response that was still
measurable after 12 h, reaching a peak at 6 h after croton oil application,
followed by a progressive decrease. Casticin and chrysosplenol D
exerted a significant inhibitory activity at each observation time, show-
ing reductions in the ranges of 30.72–77.10% and 16.76–65.16%, respec-
tively. Interestingly, despite the similar activity profile, casticin achieved
a long-lasting steady anti-inflammatory effect, which was observed
from 2 h, peaked at 4 h (77.10%) and persisted until 12 h (30.72%).
Chrysosplenol D exhibited anti-inflammatory effect from 4 h, with a
maximum response being observed between 6–12 h (55.66–65.16%).
Induction (1 μmol/cm2) significantly reduced edema at all observed
time points (Fig. 2).

The activity profile of casticin and chrysosplenol D on the whole
edematous response up to 12 h was quantified by calculating the ratio
between the AUCs for mice treated with these compounds and the
AUCs of model animals of local inflammation. Casticin, chrysosplenol
D and indomethacin reduced the global edematous response by the
same extent (38.72%, 45.44% and 36.70% respectively), significantly
lower compared with untreated mouse models of local inflammation
(89.83%) (Fig. 2).
nol D from Artemisia annua L. inhibit inflammation in vitro and in vivo,
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Fig. 5. En face fluorescencemicroscopic images of BCECF-AM-labeled Raw264.7 cells. Cells thatmigrated to the outside surface of upper chamberwere seen after incubation inmedia con-
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of 485/535 nm. Data represents the mean ± SD from three separate experiments. *P b 0.05, **P b 0.01, ***P b 0.001 vs. the LPS group.
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To establish a murinemodel of SIRS, mice were administered LPS by
intraperitoneal injection. As shown in Table 2, the body temperature de-
clined gradually after intraperitoneal injection of LPS and reached a
maximal reduction to 34 °C in 4 h (Table 2). LPS also caused a rapid in-
crease in respiratory rate compared with controls (Table 2), and in-
creased serum levels of TNFα and IL-1 beta within 4 h (Table 3).
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Pretreatment with casticin (0.07–0.27 mmol/kg) or chrysosplenol D
(0.07–0.28 mmol/kg) significantly reduced the drop in body tempera-
ture following LPS administration by 30.72 to 77.10% and 16.76 to
65.16%, respectively. Animals treated with casticin (0.27 mmol/kg) or
chrysosplenol D (0.14 or 0.28 mmol/kg) had improved respiratory
rate by 23.22% and 25.02%, respectively, roughly equivalent to the effect
of dexamethasone (24.53%) (Table 2).

Four hours after LPS administration, serum TNF-alpha and IL-1 beta
levels were increased compared with controls. Administration of
casticin, (0.07, 0.13 or 0.27 mmol/kg) significantly reduced the produc-
tion of IL-1 beta by 39.86%, 40.77% and 47.47%, respectively.
Chrysosplenol D (0.14 or 0.28 mmol/kg) markedly suppressed the pro-
duction of IL-1 beta by 42.75% and 44.35%, respectively. Dexamethasone
also caused a significant reduction in the production of TNF-alpha and
IL-1 beta by 23.81% and 51.62%, respectively. However, casticin and
chrysosplenol D did not reduce the production of TNF-alpha in this
model of systemic inflammation (Table 3).
Please cite this article as: Li, Y.-J., et al., Flavonoids casticin and chrysosplen
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In vitro casticin and chrysosplenol D suppress LPS-induced release of in-
flammatory mediators

The murine macrophage cell line Raw264.7 is commonly used to
model inflammatory responses in vitro. To investigate the effect of
casticin and chrysosplenol D on LPS-mediated secretion of proinflam-
matory mediators, we incubated Raw264.7 murine macrophages with
casticin or chrysosplenol D at 1, 5, 10 μM for 18 h, after which LPS was
added for a further 12 h. Pilot concentration response experiments
(from 1 μM to 40 μM) established the optimal dosing of casticin or
chrysosplenol D and excluded detrimental effects on cell viability
(Fig. 3). In this cell model, the addition of LPS stimulated the release
of IL-1 beta, IL-6 andMCP-1 by 2–14 folds. Casticin induced an increase
in release of IL-1 beta by up to 81.08%; IL-6 by up to 60.82%; andMCP-1
by up to 82.32%. Chrysosplenol D induced an increase in release of
TNF-alpha by up to 40.65%; IL-1 beta by up to 74.20%; IL-6 by up
to 74.96%; and MCP-1 by up to 78.68% (Fig. 4). These observations
suggest that the anti-inflammatory properties of these flavonoids
may involve reducing LPS-inducible pro-inflammatory cytokine
production.
Casticin and chrysosplenol D potently inhibit Raw264.7 cell migration

Using a Transwell chamber assay we investigated whether casticin
or chrysosplenol D altered the chemotactic activity of Raw264.7 cells.
Casticin (10 μM) reduced Raw264.7 macrophage migration by 62.29%,
and 10 μM chrysosplenol D reduced macrophage migration by 57.97%
(Fig. 5).
ol D from Artemisia annua L. inhibit inflammation in vitro and in vivo,
.005

http://dx.doi.org/10.1016/j.taap.2015.04.005


T
E
D
 P

R
O

O
F

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

Fig. 6. Change in IκB, p38MAPKs, ERK, 1/2, Stat3, MEK and c-JUN phosphorylation in response to treatmentwith casticin or chrysosplenol D (10 μmol) for 2 h. Data acquired using the Bio-
Plex phosphoprotein and total protein assay kits. All values were expressed as mean ± SD of three individual experiments. *P b 0.05, **P b 0.01, ***P b 0.001 vs. LPS-treated controls.

6 Y.-J. Li et al. / Toxicology and Applied Pharmacology xxx (2015) xxx–xxx
U
N
C
O

R
R
E
CCasticin and chrysosplenol D reduce LPS-induced IκB and c-JUN

phosphorylation

To investigate the molecular mechanisms of anti-inflammatory
properties of casticin and chrysosplenol D observed in vivo and vitro,
phosphorylation of cell signaling proteins was assessed. Raw264.7
cells incubatedwith LPS for 2 h contained higher levels of phosphorylat-
ed IκB and c-JUN, but phosphorylation of ERK1/2, Stat3, MEK and p38
MAPK proteins was not altered by LPS (Fig. 6). IκB phosphorylation
was reduced in the presence of casticin or chrysosplenol D, and c-JUN
phosphorylation was reduced in the presence of chrysosplenol D
(Fig. 6).

Casticin and chrysosplenol D act on the NF-κB transcription pathway

The NF-κB pathway is a key mediator of inflammation and result
in increased production of cytokines and chemokines including IL-6,
IL-1, TNF-alpha, andMCP-1. The capacity for chrysosplenol D to inhibit
NF-κB transactivation was assessed in LPS-stimulated HT-29
cells stably transfected with a NF-κB-driven luciferase reporter
gene. Pre-incubation with 10 μM casticin and chrysosplenol D signifi-
cantly inhibited NF-κB activation by N90% and 50%, respectively
(Fig. 7A).

Chrysosplenol D inhibition of cytokine release is mediated via JNK

To investigate whether activation of the JNK pathway was involved
in the mechanism of chrysosplenol D anti-inflammatory activity,
Raw264.7 cells were incubated with the JNK inhibitor SP600125 prior
to incubationwith chrysosplenol D and LPS, and IL-6 andMCP-1 release
Please cite this article as: Li, Y.-J., et al., Flavonoids casticin and chrysosple
Toxicol. Appl. Pharmacol. (2015), http://dx.doi.org/10.1016/j.taap.2015.04
wasmeasured by ELISA. Pre-treatment with JNK inhibitor improved the
effect of chrysosplenol D on LPS-induced IL-6 and MCP-1 release
(Fig. 7B).

Discussion

We previously reported that the anticancer activity of A. annua L.
may be attributed to the inhibition of immunemediators including pro-
inflammatory cytokines by arteannuin B, casticin and chrysosplenol D
(Zhu et al., 2013). In this study we sought to further characterize the
anti-inflammatory activity of casticin and chrysosplenol D in vivo and
vitro.

A previous study has shown the anti-inflammatory effects of casticin
in LPS-stimulatedmousemacrophages (Liou et al., 2014), but the effects
of chrysosplenol D on inflammation were unstudied. The present study
showed the substantial anti-inflammatory effects of flavonoids present
in A. annua L. in mouse models of local and systemic inflammation, as
well as in cultured mouse macrophages. Administration of casticin or
chrysosplenol D reduced croton oil-induced edema and improved LPS-
induced systemic inflammatory responses. In vitro, incubation with
casticin or chrysosplenol D decreased Raw264.7 cell migration, reduced
chemokine and cytokine production in response to LPS, suppressed LPS-
induced Raw264.7 cell migration and release of inflammatory media-
tors in a NF-κB- and c-JUN-dependent manner. Each of these functions
highlights the potential therapeutic role for these compounds in the
treatment of inflammatory diseases.

Croton oil-induced ear edema is a useful model for testing topical
anti-inflammatory activity of drugs (Tonelli et al., 1965; Tubaro et al.,
1986). Application of croton oil induces the production of pro-
inflammatory compounds and edema (Fernandez-Arche et al., 2010;
Saraiva et al., 2011). This study showed that topically applied casticin
nol D from Artemisia annua L. inhibit inflammation in vitro and in vivo,
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chrysosplenol D are able of reducing the inflammatory local reaction in-
duced by croton oil.

SIRS is a complex immune response often induced in response to
severe trauma, hemorrhage, pancreatitis and septic shock (Botwinski,
2001). SIRS is characterized by excessive production of proinflammato-
ry mediators, including TNF-alpha, IL-1 beta, IL-6, MMP-1, CCL2 and
CXCLs. High levels of these proinflammatory mediators contribute to
severe organ damage and multiple organ dysfunction syndrome
(Mendes Sdos et al., 2009). LPS, the main trigger of SIRS, activates
monocytes and macrophages, inducing release of proinflammatory cy-
tokines and mediators (Botwinski, 2001). In this study, we reported
that pretreatment of mice with casticin and chrysosplenol D reduced
the systemic immune response to LPS.

Then, we tried to explore the mechanisms of casticin and
chrysosplenol D anti-inflammatory activity using cell models of inflam-
mation. Stimulation of macrophages with LPS elicits a variety of differ-
ent signaling events, including the production of cytokines,
chemokines and other signals important for the coordination of the in-
flammatory response (Joseph et al., 2003). These inflammatory re-
sponses promote the secretion of inflammatory cytokines (Bode et al.,
2012). LPS promotes the production of inflammatory cytokines via
IκB/NF-κB and mitogen activated protein kinase (MAPK)-dependent
pathways (Bode et al., 2012). These proteins play critical roles in regu-
lating pro-inflammatory gene expression. In the present study,we dem-
onstrated in vitro that the capacity of casticin and chrysosplenol D to
reduce the pro-inflammatory effect of LPS was dependent upon NF-κB
and c-JUN. These results complement the results of a previous study
that showed that casticin decreased the secretion of proinflammatory
cytokines by activated macrophages through an inhibition of the nucle-
ar NF-κB subunit of p65 as well as through decreased Akt and MAPK
Please cite this article as: Li, Y.-J., et al., Flavonoids casticin and chrysosplen
Toxicol. Appl. Pharmacol. (2015), http://dx.doi.org/10.1016/j.taap.2015.04
activation. However, further study is necessary to determine the exact
mechanisms responsible for the effects of casticin and chrysosplenol D
on inflammation. In addition, further preclinical study is still necessary
before these compounds can be used as drugs in humans.

In the present study, casticin and chrysosplenol D decreased themi-
gration of macrophages in response to LPS. These results are supported
by a previous study of the effects of casticin on eosinophil migration in
lung epithelial cells through decreased ICAM-1 expression (Koh et al.,
2011). Further study focusing on cellular migration, adhesion, chemo-
tactic molecules is necessary.

In summary, the flavonoids casticin and chrysosplenol D extracted
from A. annua L. suppress the expression of inflammatory mediators
through the regulation of NF-κB and c-JUN in a murine macrophage
cell line. The biological effects of the casticin and chrysosplenol D con-
firmed in this study indicate that these components might be useful in
the treatment of inflammatory disorders.
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