Bibliographie : Potentiel antiviral d’Artemisia annua L.

Artemisia et Coronavirus

Cet article présente et permet l’accès aux recherches publiées relatives aux propriétés antivirales, immunomodulatrices et immunoprotectrices d’Artemisia annua et de ses principes actifs. Les études et leurs résumés sont présentés selon la chronologie de leur publication.

Artemisia et Coronavirus

Bibliographie : Potentiel antiviral d’Artemisia annua L.

1985

Tej N. Kaul, Elliott Middleton, Jr., and Pearay L. Ogra
Antiviral Effect of Flavonoids on Human Viruses
Journal of Medical Virology 15:71-79 (1985)

Full text non available

Abstract :

The effect of several naturally occurring dietary flavonoids including quercetin, naringin, hesperetin, and catechin on the infectivity and replication of herpes simplex virus type 1 (HSV‐I), polio‐virus type 1, parainfluenza virus type 3 (Pf‐3), and respiratory syncytial virus (RSV) was studied in vitro in cell culture monolayers employing the technique of viral plaque reduction. Quercetin caused a concentration‐dependent reduction in the infectivity of each virus. In addition, it reduced intracellular replication of each virus when monolayers were infected and subsequently cultured in medium containing quercetin. Preincubation of tissue culture cell monolayers with quercetin did not affect the ability of the viruses to infect or replicate in the tissue culture monolayers. Hesperetin had no effect on infectivity but it reduced intracellular replication of each of the viruses. Catechin inhibited the infectivity but not the replication of RSV and HSV‐1 and had negligible effects on the other viruses. Naringin had no effect on either the infectivity or the replication of any of the viruses studied. Thus, naturally occurring flavonoids possess a variable spectrum of antiviral activity against certain RNA (RSV, Pf‐3, polio) and DNA (HSV‐1) viruses acting to inhibit infectivity and/or replication.

1991

M.M. Abid Ali Khan, D.C. Jain, R.S. Bhakuni, Mohd. Zaim and R.S. Thakur,
Occurrence of some antiviral sterols in Artemisia annua.
Plant Science (Ireland) 75, 161-165., 1991

Occurrence of some antiviral sterols in Artemisia annua

Abstract :

Out of the twenty one medicinal plants evaluated for their virus inhibitory activity against tobamoviruses on their test hosts reacting hypersensitively, extracts of Lawsonia alba, Artemisia annua and Cornus capitata showed high virus inhibitory activity. The virus inhibitory agent (s) occurring in A. annus plant was isolated by conventional methods and identified as sterols. The sterols were characterized by spectral methods as sitosterol and stigmaterol.

Key words : tobamoviruses : Artemisia annua ; virus inhibitory agent(s) : /3-sitosterol ; stigmastero

1999

Bouic PJ, Lamprecht JH.
Plant sterols and sterolins : a review of their immune-modulating properties
Altern Med Rev. 1999 Jun ;4(3):170-7.

Plant sterols and sterolins : a review of their immune-modulating properties

Abstract :

Beta-sitosterol (BSS) and its glycoside (BSSG) are sterol molecules which are synthesized by plants. When humans eat plant foods phytosterols are ingested, and are found in the serum and tissues of healthy individuals, but at concentrations orders of magnitude lower than endogenous cholesterol. Epidemiological studies have correlated a reduced risk of numerous diseases with a diet high in fruits and vegetables, and have concluded that specific molecules, including b-carotene, tocopherols, vitamin C, and flavonoids, confer some of this protective benefit. However, these epidemiologic studies have not examined the potential effect that phytosterols ingested with fruits and vegetables might have on disease risk reduction. In animals, BSS and BSSG have been shown to exhibit anti-inflammatory, anti-neoplastic, anti-pyretic, and immune-modulating activity. A proprietary BSS:BSSG mixture has demonstrated promising results in a number of studies, including in vitro studies, animal models, and human clinical trials. This phytosterol complex seems to target specific T-helper lymphocytes, the Th1 and Th2 cells, helping normalize their functioning and resulting in improved T-lymphocyte and natural killer cell activity. A dampening effect on overactive antibody responses has also been seen, as well as normalization of the DHEA:cortisol ratio. The re-establishment of these immune parameters may be of help in numerous disease processes relating to chronic immune-mediated abnormalities, including chronic viral infections, tuberculosis, rheumatoid arthritis, allergies, cancer, and auto-immune diseases.

2004

World Health Organization
SARS Clinical trials on treatment using a combination of Traditional Chinese medicine and Western medicine. Report of the WHO International Expert Meeting to review and analyse clinical reports on combination treatment for SARS 8–10 October 2003 Beijing, People’s Republic of China
World Health Organization Geneva 2004

SARS Clinical trials on treatment using a combination of Traditional Chinese medicine and Western medicine

No Abstract

Zhang Jun-Feng,Tan Jian,Pu Qiang,Liu Ying-Hua,Liu Yue-Xue,He Kai-Ze
Study on the antiviral activities of condensed tannin of Artemisia annua L.
Natural Product Research 2004 ; 16 (4) : 307–11

Abstract in English but Full text in chinese non available

Abstract :

Inhibitory effects of condensed tannin of Artemisia annua L.(CTA) on herpes simplex virus type 2(HSV-2) and HBeAg secretion in cultured HepG2.2.1.5 cell line were investigated. When the anti-HSV-2 activity of CTA was tested with acyclovir(ACV) as contrast drug, CC 50 of CTA and ACV were 6.84 mg/mL and 3.69 mg/mL, IC 50 were 0.162 mg/mL and 0.138 mg/mL respectively. The results showed CTA was as effective as the clinical drug-ACV. To study the anti-hepatitis B virus activity of CTA, the cytotoxicity to 2.2.1.5 cell line and inhibition of HBeAg secretion were tested. The results showed that CTA had slight cytotoxicity at 2.5 mg/mL and can distinctly inhibit the secretion of HBeAg in HepG2.2.1.5 cell line. All the results indicated that CTA maybe have a high selectivity index against HSV and HBV.

2005

Shi-you Li, Cong Chen, Hai-qing Zhang, Hai-yan Guo, Hui Wang, Lin Wang a,b , Xiang Zhang c , Shi-neng Hua, Jun Yu, Pei-gen Xiao, Rong-song Li, Xuehai Tan
Identification of natural compounds with antiviral activities against SARS-associated coronavirus
Antiviral Research 67 (2005) 18-23, © 2005 Elsevier B.V

Identification of natural compounds with antiviral activities against SARS-associated coronavirus

Abstract :

More than 200 Chinese medicinal herb extracts were screened for antiviral activities against Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay for virus-induced cytopathic effect (CPE). Four of these extracts showed moderate to potent antiviral activities against SARS-CoV with 50% effective concentration (EC50) ranging from 2.4 +/- 0.2 to 88.2 +/- 7.7 microg/ml. Out of the four, Lycoris radiata was most potent. To identify the active component, L. radiata extract was subjected to further fractionation, purification, and CPE/MTS assays. This process led to the identification of a single substance lycorine as an anti-SARS-CoV component with an EC50 value of 15.7 +/- 1.2 nM. This compound has a CC50 value of 14980.0 +/- 912.0 nM in cytotoxicity assay and a selective index (SI) greater than 900. The results suggested that four herbal extracts and the compound lycorine are candidates for the development of new anti-SARS-CoV drugs in the treatment of SARS.

Marta R. Romero, Thomas Efferth, Maria A. Serrano, Beatriz Castaño, Rocio I.R. Macias, Oscar Briz, Jose J.G. Marin,
Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system
Antiviral Research 68 (2005) 75–83

Effect of artemisinin/artesunate as inhibitors of hepatitis B virus production in an “in vitro” replicative system

Abstract :

The antiviral effect against hepatitis B virus (HBV) of artemisinin, its derivative artesunate and other compounds highly purified from traditional Chinese medicine remedies, were investigated. HBV production by permanently transfected HepG2 2.2.15 cells was determined by measuring the release of surface protein (HBsAg) and HBV-DNA after drug exposure (0.01-100 microM) for 21 days. The forms of HBV-DNA released were investigated by Southern-blotting. Neutral Red retention test was used to evaluate drug-induced toxicity on host cells. The compounds were classified according to their potential interest as follows : (i) none : they had no effect on viral production (daidzein, daidzin, isonardosinon, nardofuran, nardosinon, tetrahydronardosinon and quercetin) ; (ii) low : they were able to markedly reduce viral production, but also induced toxicity on host cells (berberine and tannic acid) or they had no toxic effect on host cells but only had a moderate ability to reduce viral production (curcumin, baicalein, baicalin, bufalin, diallyl disulphide, glycyrrhizic acid and puerarin) ; (iii) high : they induced strong inhibition of viral production at concentrations at which host cell viability was not affected (artemisinin and artesunate). Moreover, artesunate in conjunction with lamivudine had synergic anti-HBV effects, which warrants further evaluation of artemisinin/artesunate as antiviral agents against HBV infection.

2006

Romero Marta, Serrano Maria, Vallejo Marta, Efferth Thomas ; Alvarez, Marcelino ; Marin, Jose
Antiviral Effect of Artemisinin from Artemisia annua against a Model Member of the Flaviviridae Family, the Bovine Viral Diarrhoea Virus (BVDV)
Planta Medica 72(13):1169-74, November 2006

Antiviral Effect of Artemisinin from Artemisia annua against a Model Member of the Flaviviridae Family, the Bovine Viral Diarrhoea Virus (BVDV)

Abstract : 

The antiviral activity versus flaviviruses of artemisinin, a safe drug obtained from Artemisia annua and commonly used to treat malaria, has been investigated using as an IN VITRO model bovine epithelial cells from embryonic trachea (EBTr) infected with the cytopathic strain Oregon C24V, of bovine viral diarrhoea virus (BVDV), which is a member of the Flaviviridae family. Antiviral activity was estimated by the degree of protection against the cytopathic effect of BVDV on host cells and by the reduction in BVDV-RNA release to the culture medium. To induce an intermediate cytopathic effect in non-treated cells, EBTr cells were first exposed to BVDV for 48 h and then incubated with virus-free medium for 72 h. Ribavirin and artemisinin (up to 100 microM) induced no toxicity in host cells, whereas a slight degree of toxicity was observed for IFN-alpha at concentrations above 10 U/mL up to 100 U/mL. Treatment of infected cells with IFN-alpha, ribavirin and artemisinin markedly reduced BVDV-induced cell death. A combination of these drugs resulted in an additive protective effect. These drugs induced a significant reduction in the production/release of BVDV virions by infected EBTr cells ; there was also an additive effect when combinations of them were assayed. These results suggest a potential usefulness of artemisinin in combination with current pharmacological therapy for the treatment of human and veterinary infections by flaviviruses.

2007

Yan CHEN, Jeff J. GUO, Daniel P HEALY, Siyan ZHAN
Effect of integrated traditional Chinese medicine and western medicine on the treatment of severe acute respiratory syndrome : A meta-analysis
Pharmacy Practice 2007 ; 5(1) : 1-9.

Effect of integrated traditional Chinese medicine and western medicine on the treatment of severe acute respiratory syndrome : A meta-analysis

Abstract

Background : Data regarding the treatment efficacy of integrative treatment of Traditional Chinese Medicine (TCM) and Western Medicine (WM) in treating patients with (SARS) are conflicting. The effects of integrative TCM/WM treatment have not
been fully quantified.

Objectives : To systematically asses the treatment effects of integrated TCM with WM versus WM alone in patients with SARS, incorporating data from recently published studies.

Methods : A meta-analysis was conducted, using published randomized and nonrandomized controlled clinical studies that compared the treatment effects of integrative TCM/WM with WM alone from 2002 to 2006.The outcome measurements included mortality rate, cure rate, resolution of pulmonary infiltrate, use of corticosteroid, and time to defervescence. The effect sizes were presented as risk ratio (RR), rate difference (RD), and weighted mean difference (WMD).The pooled effect sizes were calculated by both fixed-effects and random-effects models.
Results : A total of 1,678 patients with a diagnosis of SARS were identified, including 866 patients from 16 randomized controlled studies and 812 patients from 8 nonrandomized controlled studies. There were no differences detected in mortality rate or cure rate between treatments. Compared with patients receiving WM treatment alone, patients receiving integrative treatment were more likely to have complete or partial resolution of pulmonary infiltrate (RD=0.18, 95%CI ; 0.07 to 0.30), lower average daily dosage (mg) of corticosteroid (WMD=-60.27, 95% CI ; -70.58 to -49.96), higher CD4+ counts (cells/uL) (WMD=167.96, 95% CI ;
109.68 to 226.24), and shorter time to defervescence (days) (WMD= -1.06, 95%CI ;-1.60 to -0.53).

Conclusions : The experience of integrative TCM/WM in the treatment of SARS is encouraging. The use of TCM as an adjunctive therapy in the treatment of SARS should be further investigated.

Vincent C. C. Cheng, Susanna K. P. Lau, Patrick C. Y. Woo, et Kwok Yung Yuen
Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection
Clinical Microbiology Reviews, Oct. 2007, p. 660-694 Vol. 20, No. 4, American Society for Microbiology.

Severe Acute Respiratory Syndrome Coronavirus as an Agent of Emerging and Reemerging Infection

No Abstract

2008

Efferth T, Romero MR, Wolf DG, Stamminger T, Marin. JJG, Marschall M. 
The antiviral activities of artemisinin and artesunate
Clin Infect Dis. 2008 ; 47:804-11.

The antiviral activities of artemisinin and artesunate

Abstract :

Traditional Chinese medicine commands a unique position among all traditional medicines because of its 5000 years of history. Our own interest in natural products from traditional Chinese medicine was triggered in the 1990s, by artemisinin-type sesquiterpene lactones from Artemisia annua L. As demonstrated in recent years, this class of compounds has activity against malaria, cancer cells, and schistosomiasis. Interestingly, the bioactivity of artemisinin and its semi synthetic derivative artesunate is even broader and includes the inhibition of certain viruses, such as human cytomegalovirus and other members of the Herpesviridae family (e.g.,herpes simplex virus type 1 and Epstein-Barr virus), hepatitis B virus, hepatitis C virus, and bovine viral diarrhea virus. Analysis of the complete profile of the pharmacological activities and molecular modes of action of artemisinin and artesunate and their performance in clinical trials will further elucidate the full antimicrobial potential of these versatile pharmacological tools from nature.

N.Q. Liu, F, Van der Kooy, R. Verpoorte
.Artemisia afra : A potential flagship for African medicinal plants ?
South African Journal of Botany 75 (2009) 185–195

Artemisia afra : A potential flagship for African medicinal plants ?

Abstract : The genus Artemisia consists of about 500 species, occurring throughout the world. Some very important drug leads have been discovered from this genus, notably artemisinin, the well known anti-malarial drug isolated from the Chinese herb Artemisia annua. The genus is also known for its aromatic nature and hence research has been focussed on the chemical compositions of the volatile secondary metabolites obtained from various Artemisia species. In the southern African region, A. afra is one of the most popular and commonly used herbal medicines. It is used to treat various ailments ranging from coughs and colds to malaria and diabetes. Although it is one of the most popular local herbal medicines, only limited scientific research, mainly focussing on the volatile secondary metabolites content, has been conducted on this species. The aim of this review was therefore to collect all available scientific literature published on A. afra and combine it into this paper. In this review, a general overview will be given on the morphology, taxonomy and geographical distribution of A. afra. The major focus will however be on the secondary metabolites, mainly the volatile secondary metabolites, which have been identified from this species. In addition all of the reported biological activities of the extracts derived from this species have been included as well as the literature on the pharmacology and toxicology. We aim at bringing together most of the available scientific research conducted on this species, which is currently scattered across various publications, into this review paper.

Keywords : Artemisia afra ; Traditional African Medicine ; Volatile secondary Metabolites

2009

Yang GE, Bao L, Zhang XQ, Wang Y, Li Q, Zhang WK, Ye WC
Studies on flavonoids and their antioxidant activities of Artemisia annua.
Zhong Yao Cai. 2009 Nov ; 32(11) : 1683-6.

Abstract in English but full text in Chinese not available

Abstract :

To study the flavonoids and their antioxidant activities of Artemisia annua. Isolation and purification were carried out by silica gel and Sephadex LH-20 column chromatographies. Compounds were identified by physicochemical properties and spectral analysis, then their antioxidant activities were evaluated by ORAC assay. Five flavonoids were isolated from the plant. Their structures were identified as 5-hydroxy-3,7,4’-trimethoxyflavone(1), 5-hydroxy-6,7,3’,4’-tetramethoxyflavonol (2), blumeatin (3), 5, 4’-dihydroxy-3,7,3’-trimethoxyflavone (4) and quercetin (5), respectively. Compounds 1-5 could slow up the attenuation rate of the fluorescence induced by AAPH. Compounds 1-3 are isolated from the plant for the first time. Compounds 1-5 all possess the potential antioxidant activities.

2010

J.F.S. Ferreira, Dave Luthria, Tomikazu Sasaki, Arne Heyerick,
Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer
Molecules 2010, 15, 3135-3170

Flavonoids from Artemisia annua L. as Antioxidants and Their Potential Synergism with Artemisinin against Malaria and Cancer

Abstract :

Artemisia annua is currently the only commercial source of the sesquiterpene lactone artemisinin. Since artemisinin was discovered as the active component of A. annua in early 1970s, hundreds of papers have focused on the anti-parasitic effects of artemisinin and its semi-synthetic analogs dihydroartemisinin, artemether, arteether, and artesunate. Artemisinin per se has not been used in mainstream clinical practice due to its poor bioavailability when compared to its analogs. In the past decade, the work with artemisinin-based compounds has expanded to their anti-cancer properties. Although artemisinin is a major bioactive component present in the traditional Chinese herbal preparations (tea), leaf flavonoids, also present in the tea, have shown a variety of biological activities and may synergize the effects of artemisinin against malaria and cancer. However, only a few studies have focused on the potential synergistic effects between flavonoids and artemisinin. The resurgent idea that multi-component drug therapy might be better than monotherapy is illustrated by the recent resolution of the World Health Organization to support artemisinin-based combination therapies (ACT), instead of the previously used monotherapy with artemisinins. In this critical review we will discuss the possibility that artemisinin and its semi-synthetic analogs might become more effective to treat parasitic diseases (such as malaria) and cancer if simultaneously delivered with flavonoids. The flavonoids present in A. annua leaves have been linked to suppression of CYP450 enzymes responsible for altering the absorption and metabolism of artemisinin in the body, but also have been linked to a beneficial immunomodulatory activity in subjects afflicted with parasitic and chronic diseases.
Keywords : Artemisia annua ; artemisinin ; flavonoids ; antimalarial, anticancer ; synergism

James T. Mukinda ; James A. Syce ; David Fisher ; Mervin Meyer
Effect of the plant matrix on the uptake of luteolin derivatives-containing Artemisia afra aqueous-extract in Caco-2 cells
Journal of Ethnopharmacology. 2010 Aug 9 ; 130(3) : 439-49.

Effect of the plant matrix on the uptake of luteolin derivatives-containing Artemisia afra aqueous-extract in Caco-2 cells

Abstract :

Aim of the study : Luteolin is a major flavonoid constituent and a primary candidate that might contribute to the claimed in vivo protective effects of Artemisia afra (Jacq. Ex. Willd). However, an exhaustive search yielded no literature evidence on the absorption, metabolism and fate of this flavonoid from the traditional plant preparation. The purpose of this study was to investigate the effect of the plant matrix on the uptake of luteolin derivatives from Artemisia afra aqueous extract in human intestinal epithelial Caco-2 cells.

Materials and methods : Cell monolayers were incubated with 5, 10 and 20 ?g/ml doses of luteolin aglycone, luteolin-7-0-glucoside, un-hydrolyzed or acid-hydrolyzed Artemisia afra extracts, and samples of 150 ?l each were collected from both apical and basolateral sides of cells at 30, 60 and 120min for HPLC and LC–MS analyses.

Results : After 1-h exposure, the uptake of luteolin aglycone and luteolin-7-0-glucoside from the unhydrolyzed and acid-hydrolyzed extracts was significantly faster and quantitatively higher (i.e. >77% vs. < 25% of the initial doses over the first 30min, p < 0.05) than that from non-plant solutions. Apical to basolateral permeability coefficients for luteolin and its-7-0-glucoside in the extracts were 1.6- to 2-fold higher than that for the non-plant solutions. Glucuronidation was an important pathway of metabolismfor luteolin in both non-plant and plant extract forms.

Conclusions : Luteolin in Artemisia afra aqueous extract, regardless of its form (i.e. whether aglycone and 7-0-glucoside), is taken up better and more efficiently metabolized than the aglycone and 7-0-glucoside forms administered as pure solutions in Caco-2 cells. Flavonoid actives from Artemisia afra plant extracts and especially traditionally prepared dosage forms may thus have better bioavailability, and consequently greater in vivo potency, than that predicted from studies done using the pure solutions

Keywords : Artemisia afra, Flavonoid, Luteolin, Glucosides, Transepithelial, transport, Caco-2 cells, Bioavailability

2011

Keivan Zandi, Boon-Teong Teoh, Sing-Sin Sam, Pooi-Fong Wong, Mohd Rais Mustafa and Sazaly AbuBakar
Antiviral activity of four types of bioflavonoid against dengue virus type-2
Virology Journal 2011, 8:560

Antiviral activity of four types of bioflavonoid against dengue virus type-2

Abstract :

Background : Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC 50 ) to inhibitory concentration 50 (IC 50 ) for each compound.

Results : The half maximal inhibitory concentration (IC 50 ) of quercetin against dengue virus was 35.7 μg mL -1 when it was used after virus adsorption to the cells. The IC 50 decreased to 28.9 μg mL -1 when the cells were treated continuously for 5 h before virus infection and up to 4 days post-infection. The SI values for quercetin were 7.07 and 8.74 μg mL -1 , respectively, the highest compared to all bioflavonoids studied. Naringin only exhibited anti-adsorption effects against DENV-2 with IC 50 = 168.2 μg mL -1 and its related SI was 1.3. Daidzein showed a weak anti-dengue activity with IC 50 = 142.6 μg mL -1 when the DENV-2 infected cells were treated after virus adsorption. The SI value for this compound was 1.03. Hesperetin did not exhibit any antiviral activity against DENV-2. The findings obtained from Foci Forming Unit Reduction Assay (FFURA) were corroborated by findings of the qRT-PCR assays. Quercetin and daidzein (50 μg mL -1 ) reduced DENV-2 RNA levels by 67% and 25%, respectively. There was no significant inhibition of DENV-2 RNA levels with naringin and hesperetin.

Conclusion : Results from the study suggest that only quercetin demonstrated significant anti-DENV-2 inhibitory activities. Other bioflavonoids, including daidzein, naringin and hesperetin showed minimal to no significant inhibition of DENV-2 virus replication. These findings, together with those previously reported suggest that select group of bioflavonoids including quercetin and fisetin, exhibited significant inhibitory activities against dengue virus. This group of flavonoids, flavonol, could be investigated further to discover the common mechanisms of inhibition of dengue virus replication.

Keywords : Antiviral, Dengue virus, Flavonoid, Quercetin, Naringin, Daidzein, Hesperetin

MK Karamoddini, SA Emami, MS Ghannad, A Sahebcar.
Antiviral activities of aerial subsets of Artemisia species against Herpes Simplex virus type 1 (HSV1) in vitro
Asian Biomedicine vol 5-1, 2011, 63-6

Antiviral activities of aerial subsets of Artemisia species against Herpes Simplex virus type 1 (HSV1) in vitro

Abstract :

Background : Drug resistance to current anti-herpetic drugs has been increasingly reported. Therefore, there is a need for finding new antiviral agents, in particular from natural sources.

Objective : In the present study, antiviral activity of subset extracts obtained from aerial parts of Artemisia including A. incana, A. chamaemelifolia, A. campesteris, A. fragrans, A. annua, A. vulgaris, and A. persica were investigated against Herpes Simplex type I (HSV1).

Methods : Different concentrations of extracts (400, 200, 100, 50, 25, 12.5, 6.25, and 3.125 μg/mL) were obtained from subset of each plant separately, and used against KOS strain of HSV1 in HeLa cells. After 24 hours incubation, tetrazolium dye (MTT), was added. The dye absorption by viable cells was measured and compared to the positive control (extract-untreated cells) and acyclovir (as anti-viral agent).

Results : The extracts obtained from A. annua had the highest antiviral activity while those of A. chamaemelifolia showed the lowest activity.

Conclusion : Subset extracts of A. annua may be an appropriate candidate for further development of anti HSV1 infection.

Keywords : Antivirals, Artemisia, asteraceae, herpes simplex

Gayathri V. Patil, Sujata K. Dass and Ramesh Chandra
Artemisia afra and Modern Diseases
Journal of Pharmacogenomics & Pharmacoproteomics 2011, 2:3

Artemisia afra and Modern Diseases

Abstract :

Herb Artemisia afra has recently attracted worldwide attention of researchers for its possible use in the modern diseases like diabetes, cardiovascular diseases, cancer, respiratory diseases etc. This review is exhaustive and systematic organization of the available literature on Artemisia afra (A. afra) from January 1922 to July 2011. The literature survey presents the number of publications with respect to time. Patents are briefly described ; the traditional uses are classified and summarized. Some emphasis is given to the data and projections of modern diseases and the ongoing research in this area in the context of title of this review. The pharmacognostic aspects, chemical constituents and factors affecting it, the activity, analysis & quality control, pharmaceutical dosage form etc. is dealt in this review.

Keywords : Artemisia afra ; Patents ; Traditional uses ; Chemical constituents ; Activity ; Toxicity ; Dosage form

2012

Andrea Lubbe, Isabell Seibert, Thomas Klimkait, Frank van der Kooy.
Ethnopharmacology in overdrive : The remarkable anti-HIV activity of Artemisia annua.
Journal of Ethnopharmacology (2012) JEP-7371

Ethnopharmacology in overdrive : The remarkable anti-HIV activity of Artemisia annua

Abstract

Ethnopharmacological relevance : Artemisia annua contains the well-known antimalarial compound artemisinin, which forms the backbone of the global malaria treatment regime. In African countries a tea infusion prepared from Artemisia annua has been used for the treatment of malaria only for the past 10-20 years. Several informal claims in Africa exist that the Artemisia annua tea infusions are also able to inhibit HIV. Since HIV is a relatively newly emerged disease, the claims, if substantiated, could provide a very good example of "ethnopharmacology in overdrive". The objective of this study was to provide quantitative scientific evidence that the Artemisia annua tea infusion exhibits anti-HIV activity through in vitro studies. A second objective was to determine if artemisinin plays a direct or indirect (synergistic) role in any observed activity. This was done by the inclusion of a chemically closely related species, Artemisia afra, known not to contain any artemisinin in our studies.

Materials and methods : Validated cellular systems were used to test Artemisia annua tea samples for anti-HIV activity. Two independent tests with different formats (an infection format and a co-cultivation format) were used. Samples were also tested for cellular toxicity against the human cells used in the assays.
Results : The Artemisia annua tea infusion was found to be highly active with IC(50) values as low as 2.0 μg/mL. Moreover we found that artemisinin was inactive at 25 μg/mL and that a chemically related species Artemisia afra (not containing artemisinin) showed a similar level of activity. This indicates that the role of artemisinin, directly or indirectly (synergism), in the observed activity is rather limited. Additionally, no cellular toxicity was seen for the tea infusion at the highest concentrations tested.

Conclusion : This study provides the first in vitro evidence of anti-HIV activity of the Artemisia annua tea infusion. We also report for the first time on the anti-HIV activity of Artemisia afra although this was not an objective of this study. These results open the way to identify new active pharmaceutical ingredients in Artemisia annua and thereby potentially reduce the cost for the production of the important antimalarial compound artemisinin.

2013

Frank Van der Kooy
Reverse Pharmacology and Drug Discovery : Artemisia annua and Its Anti-HIV Activity
In : Aftab T., Ferreira J., Khan M., Naeem M. (eds) Artemisia annua - Pharmacology and Biotechnology. Springer, Berlin, Heidelberg, 27 November 2013, pp 249-267

Reverse Pharmacology and Drug Discovery : Artemisia annua and Its Anti-HIV Activity

Abstract

There are various ways in which new drugs can be developed. One approach is in silico drug design based on our existing knowledge of the biology of a specific disease and the specific target site binding chemistry. Based on this knowledge, a range of molecules will be designed and synthesised after which they will be tested in in vitro bioassays for activity and toxicity. The best candidates, called lead compounds, will then be “fine-tuned” by chemical derivatisation in order to improve their activity and/or to reduce their toxicity. Lead compounds are then tested in various animal models before entering clinical trials in people. Another approach is to screen a large number of biological samples (plants, bacteria and fungi) for activity against a specific disease. Any active extract, consisting of many compounds, will be fractionated by chromatographic techniques, and each fraction will be tested for in vitro activity. Active fractions will again be fractionated until the active compound is identified. This process, also called bioguided fractionation, can go through a number of fractionation cycles before the active compound is identified. The active compound will be chemically derivatised in order to improve its properties before in vivo animal studies will be conducted. Based on these test results, the most promising lead compounds will then be tested in clinical trials in people. There are however a number of shortcomings with both approaches. It is expensive, time consuming, makes use of in vitro bioassays and it suffers from a very low success rate. Due to these shortcomings, it is currently estimated that the development of one new drug costs around $1–1.5 billion, simply because so many lead compounds fail during clinical trials. Keeping these high costs in mind, one would think that all registered drugs are effective and importantly non-toxic. Unfortunately, this is not the case, as there are a number of drugs currently on the market that are causing severe side effects and whose efficacy should be questioned. This holds true particularly for cancer chemotherapeutics. It was estimated that cancer chemotherapy improves the average 5-year survival rate of patients (for all cancer types) by only 2 % (Morgan et al. 2004). Another relatively unknown fact is that each year, 200,000 people die in the EU due to adverse drug reactions (all types of drugs), highlighting the severe shortcomings of the drug development and drug licensing pipelines (Archibald and Coleman 2012). To put this into perspective, there are a large number of drugs that work perfectly well and are safe to use, but we have to concede that our approach to drug discovery and our overall approach to health care suffers from some major problems.

Keywords :
Medicinal Plant Chlorogenic Acid Bovine Viral Diarrhoea Virus Artemisinin Derivative Vitro Bioassay

***

Xiaoxin X. Zhu, Lan Yang, Yujie J. Li 1 , Dong Zhang, Ying Chen, Petra Kostecká, Eva Kmoníèková, Zdenìk Zídek
Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis
Pharmacological Reports, 2013, 65, 410-420 ISSN 1734-1140

{Effects of sesquiterpene, flavonoid and coumarin types of compounds from Artemisia annua L. on production of mediators of angiogenesis

Abstract :

Background : In addition to recognized antimalarial effects, Artemisia annua L.(Qinghao) possesses anticancer properties. The underlying mechanisms of this activity are unknown. The aim of our experiments was to investigate the effects of distinct types of compounds isolated from A. annua on the immune-activated production of major mediators of angiogenesis playing a crucial role in growth of tumors and formation of metastasis.

Methods : Included in the study were the sesquiterpene lactones artemisinin and its biogenetic precursors arteannuin B and artemisinic acid. The semi-synthetic analogue dihydroartemisinin was used for comparative purposes. The flavonoids were represented by casticin and chrysosplenol D, the coumarin type of compounds by 4-methylesculetin. Their effects on the lipopolysaccharide (LPS)-induced in vitro production of nitric oxide (NO) were analyzed in rat peritoneal cells using Griessre agent. The LPS-activated production of prostaglandin E2 (PGE2) and cytokines (VEGF, IL-1b, IL-6 and TNF-a) was determined in both rat peritoneal cells and human peripheral blood mononuclear cells using ELISA.

Results : All sesquiterpenes (artemisinin, dihydroartemisinin, artemisinic acid, arteannuin B) significantly reduced production of PGE2 . Arteannuin B also inhibited production of NO and secretion of cytokines. All NO, PGE2 andcytokines were suppressed by flavonoids casticin and chrysosplenol D. The coumarin derivative, 4-methylesculetin, was ineffective to change the production of any of these factors.

Conclusions : The inhibition of immune mediators of angiogenesis by sesquiterpene lactones and flavonoids may be one of the mechanisms of anticancer activity of Artemisia annua L.

Key words : Artemisia annua L., nitric oxide, prostaglandins, cytokines, angiogenic factors

Pierre Lutgen
Luteolin in the Artemisia family
Malariaworld.com, 16 mars 2013

Luteolin in the artemisia family

No abstract

2014

Liang-Tzung Lin, Wen-Chan Hsu, Chun-Ching Lin
Antiviral Natural Products and Herbal Medicines
Journal of Traditional and Complementary Medicine, 2014, Vo1. 4, No. 1, pp. 24-35

Antiviral Natural Products and Herbal Medicines

Abstract :

Viral infections play an important role in human diseases, and recent outbreaks in the advent of globalization and ease of travel have underscored their prevention as a critical issue in safeguarding public health. Despite the progress made in immunization and drug development, many viruses lack preventive vaccines and efficient antiviral therapies, which are often beset by the generation of viral escape mutants. Thus, identifying novel antiviral drugs is of critical importance and natural products are an excellent source for such discoveries. In this mini‑review, we summarize the antiviral effects reported for several natural products and herbal medicines.

Key words : Antiviral, Drug development, Herbal medicines, Natural products

Alka Singh, Bendangchuchang Longchar, Feroz Khan, Alka Singh, Sunita Jindal, Vikrant Gupta

Over expression of Artemisia annua sterol C-4 methyl oxidase gene, AaSMO1, enhances total sterols and improves tolerance to dehydration stress in tobacco
Plant Cell Tissue and Organ Culture 121(1) : 167-181, April 2014

Over expression of Artemisia annua sterol C-4 methyl oxidase gene, AaSMO1, enhances total sterols and improves tolerance to dehydration stress in tobacco

Abstract :

Biosynthesis of sterols is a multistep process in higher plants where the precursor cycloartenol gets converted into functional phytosterols after removal of two methyl groups at C-4 by an enzyme complex involving a sterol C-4 methyl oxidase (SMO). We identified and cloned a cDNA from Artemisia annua designated as AaSMO1 showing similarity to SMO. The cDNA predicted to encode a polytopic protein with characteristic histidine-rich motifs and an ER retrieval signal. GFP-AaSMO1 fusion protein was localized in endoplasmic reticulum of transformed protoplast and onion epidermal cells. AaSMO1 expression was drastically induced upon osmotic/dehydration stress and its promoter showed the presence of abscisic acid responsive element. Transgenic tobacco plants ectopically overexpressing AaSMO1 were raised, and various biochemical and physiological analyses of transgenics revealed increased total sterol, better germination and growth in subsequent generations. They also exhibited reduced sensitivity towards osmotic/dehydration stress which may be attributed to enhanced SMO1 activity. Our studies demonstrated that apart from acting as phytohormones, plant sterols also participate in providing capability to plants for improved growth and adaptation during stress conditions. AaSMO1 can be used as an excellent candidate for generating dehydration/drought tolerant plants.
Keywords : Plant sterols, Sub-cellular localization, AaSMO1, Dehydration stress, RT-qPCR

2015

Wenjiao Wu, Richan Li, Xianglian Li, Jian He, Shibo Jiang, Shuwen Liu, and Jie Yang
Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry
Viruses, Volume : 8, Issue : 1, pp. 6, Dec 2015

Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry

Abstract :

Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.

Keywords : entry inhibitor, hemagglutinin, influenza A virus, quercetin

Christoph Reiter, Tony Fröhlich, Lisa Gruber, Corina Hutterer, Manfred Marschall, Cornelia Voigtländer, Oliver Friedrich, Barbara Kappes, Thomas Efferth, Svetlana B. Tsogoeva
Highly potent artemisinin-derived dimers and trimers : Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities
Bioorganic & Medicinal Chemistry 23 (2015) 5452–5458

Highly potent artemisinin-derived dimers and trimers : Synthesis and evaluation of their antimalarial, antileukemia and antiviral activities

Abstract :

New pharmaceutically active compounds can be obtained by modification of existing drugs to access more effective agents in the wake of drug resistance amongst others. To achieve this goal the concept of hybridization was established during the last decade. We employed this concept by coupling two artemisinin-derived precursors to obtain dimers or trimers with increased in vitro activity against Plasmodium falciparum 3D7 strain, leukemia cells (CCRF-CEM and multidrug-resistant subline CEM/ADR5000) and human cytomegalovirus (HCMV). Dimer 4 (IC 50 of 2.6 nM) possess superior anti-malarial activity compared with its parent compound artesunic acid (3) (IC 50 of 9.0 nM). Dimer 5 and trimers 6 and 7 display superior potency against both leukemia cell lines (IC 50 up to 0.002 l M for CCRF-CEM and IC 50 up to 0.20 l M for CEM/ADR5000) and are even more active than clinically used doxorubicin (IC 50 1.61 l M for CEM/ADR5000). With respect to anti-HCMV activity, trimer 6 is the most efficient hybrid (IC 50 0.04 l M) outperforming ganciclovir (IC 50 2.6 l M), dihydroartemisinin (IC 50 >10 l M) and artesunic acid (IC 50 3.8 l M).

Keywords : Artemisinin-derived hybrids, Artemisinin-derived dimers, Artemisinin-derived trimers, Antimalarial activity, Anticancer activity, Antiviral activity

2016

Pierre Lutgen
Tannins in Artemisia : hidden treasure for prophylaxis
Text published on the web site Malaria world, October 9, 2016

Tannins in Artemisia : hidden treasure for prophylaxis

No abstract

2017

Eun Ji Kim, Guen Tae Kim, Bo Min Kim, Eun Gyeong Lim, Sang-Yong Kim and Young Min Kim
Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells
Complementary and Alternative Medicine (2017) 17:236

Apoptosis-induced effects of extract from Artemisia annua Linné by modulating PTEN/p53/PDK1/Akt/ signal pathways through PTEN/p53-independent manner in HCT116 colon cancer cells

Abstract :

Background : The extracts from Artemisia annua Linné (AAE) has been known to possess various functions including anti-bacterial, anti-virus and anti-oxidant effects. However, the mechanism of those effects of AAE is not well known. Pursuantly, we determined the apoptotic effects of extract of AAE in HCT116 cell. In this study, we suggested that AAE may exert cancer cell apoptosis through PTEN/PDK1/Akt/p53signal pathway and mitochondria-mediated
apoptotic proteins.

Methods : We measured 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) assay, Hoechst 33342 staining, Annexin V-PI staining, Mitopotential assay, immunofluorescence (IF) and Western blotting. Accordingly, our study showed that AAE treatment to HCT116 cells resulted in inhibition of PDK1, Akt, MDM2, Bcl-2, and pro-caspase 3 as well as activation of PTEN, p53-upregulated modulator of apoptosis (PUMA), Bax and Bak expression. Also we measured in vivo assay that xenograft model, H&E assay, TUNEL assay and IHC.

Results : AAE induced apoptosis via PTEN/p53/PDK1/Akt signal pathways through PTEN/p53-independent manner. AAE inhibit cell viability and increase LDH release in HCT116 colon cancer cell. Also, AAE increase apoptotic bodies, caspase −3,7 activation and reduces mitochondria membrane potential. AAE regulates cytochrome c translocation to the cytoplasm and Bax translocation to the mitochondrial membrane in an Immunofluorescence staining and increase
PTEN and p53 expression in an in vivo tumor xenograft model. To elucidate the role of the PTEN/p53/PDK1/Akt signal pathways in cancer control, we conditionally inactivated PTEN/p53/PDK1/Akt signal pathways. We used inhibitors of PTEN, p53, PDK1, Akt. In consequence, these results indicate that AAE induced apoptosis by means of a mitochondrial event through the regulation of proteins such as Bax, Bak and cytochrome c in PDK1/Akt signaling pathways via PTEM/p53-independent manner.

Conclusions : We confirmed the apoptotic effect of extracts of AAE by Modulating PTEN/p53/PDK1/Akt/Signal
Pathways through PTEN/p53-independent pathwaysin HCT116 colon cancer cell.

Keywords : Phosphatase and tensin homolog (PTEN), p53-independent manner, Artemisia annua Linné, Apoptosis,
HCT116 colon cancer cell

2019

Wenwen Dai, Jinpeng Bi, Fang Li, Shuai Wang, Xinyu Huang, Xiangyu Meng, Bo Sun, Deli Wang, Wei Kong, Chunlai Jiang and Weiheng Su
Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice
Viruses, 2019

Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice

Abstract :

Enterovirus 71 (EV71) infection is known to cause hand, foot, and mouth disease (HFMD), which is associated with neurological complications ; however, there is currently no effective treatment for this infection. Flavonoids are a large group of naturally occurring compounds with multiple bioactivities, and the inhibitory effects of several flavonoids against EV71 have been studied in cell cultures ; however, to date, there are no reported data on their effects in animal models. In this study, weconfirmedthe in vitro activities of eight flavonoids against EV71 infection, based on the inhibition of cytopathic effects. Moreover, these flavonoids were found to reduce viral genomic RNA replication and protein synthesis. We further demonstrated the protective efficacy of these flavonoids in new born mice challenged with a lethal dose of EV71. Apigenin, luteolin, kaempferol, formononetin, and penduletin conferred survival protection of 88.89%, 91.67%, 88.89%, 75%, and 66.67%, respectively, from the lethal EV71 challenge. In addition, isorhamnetin provided the highest mice survival protection of 100% at a dose of 10 mg/kg. This study, to the best of our knowledge, is the first to evaluate the in vivo anti-EV7l activities of multiple flavonoids, and we accordingly identified flavonoids as potential leading compounds for anti-EV71 drug development.

Keywords : enterovirus 71 ; flavonoid ; isorhamnetin ; antiviral efficacy ; inhibition of cytopathic effects ; survival rate

2020

Tu Youyou
Études sur les actions pharmacologiques de l’ Artemisia annua. Action antivirale
Extrait [Chapitre 6] de Youyou Tu, Prix Nobel de médecine. De Artemisia annua L. aux artémisinines. La découverte et le développement des artémisinines et des agents antipaludiques, QuintSciences, ECP Sciences, Chemical Industry Press
2019 Chemical Industry Press, published by Elsevier Inc., with Chemical Industry Press, in association with the B&R Book Program.

Excerpt :

Action antivirale (de l’artemisinine)

Editorial board
Redeploying plant defences
Nature Plants, volume 6, 177, 2020

Redeploying plant defences

Journal Editorial

No abstract

Yang, Y., Islam, M. S., Wang, J., Li, Y. Chen, X.
Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2) : A Review and Perspective
International Journal of. Biological Sciences. 16, 1708–1717 (2020).

Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2) : A Review and Perspective

Abstract :

Currently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV, the causative pathogen of Coronavirus Disease 2019 (COVID-19)) has rapidly spread across China and around the world, causing an outbreak of acute infectious pneumonia. No specific anti-virus drugs or vaccines are available for the treatment of this sudden and lethal disease. The supportive care and non-specific treatment to ameliorate the symptoms of the patient are the only options currently. At the top of these conventional therapies, greater than 85% of SARS-CoV-2 infected patients in China are receiving Traditional Chinese Medicine (TCM) treatment. In this article, relevant published literatures are thoroughly reviewed and current applications of TCM in the treatment of COVID-19 patients are analyzed. Due to the homology in epidemiology, genomics, and pathogenesis of the SARS-CoV-2 and SARS-CoV, and the widely use of TCM in the treatment of SARS-CoV, the clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed. Current experiment studies that provide an insight into the mechanism underlying the therapeutic effect of TCM, and those studies identified novel naturally occurring compounds with anti-coronaviral activity are also introduced.

Key words : SARS-CoV-2, Traditional Chinese Medicine (TCM), coronavirus pneumonia.

National Health Commission & State Administration of Traditional Chinese Medicine
Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)
(Released on March 3, 2020)

Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)

Excerpt :

National Health Commission & State Administration of Traditional Chinese Medicine
Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (Trial Version 7)
(Released on March 3, 2020)

Excerpt :

4.2.2 Mild cases

4.2.2.1 Cold dampness and stagnation lung syndrome

Clinical manifestations : fever, fatigue, sore body, cough, expectoration, chest tightness, suffocation, loss of appetite, nausea, vomiting, sticky stools. Tongue has thin fat tooth mark or is faint red, and the coating is white thick rot or white greasy and the pulse is moisten or slippery.

Recommended prescription : Raw ephedra 6g, raw gypsum 15g, almond 9g, loquat 15g, gardenia 15g, Guanzhong 9g, Dilong 15g, Xu Changqing 15g, Huoxiang 15g, Peilan 9g, Cangzhu 15g, Yunling 45g, Atractylodes 30g, Jiao Sanxian 9g each , Magnolia 15g, betel coconut 9g, yarrow fruit 9g, ginger 15g.

Suggested use : one dose daily, boiled with 600ml water, take it three times at morning, noon and evening before meal.

4.2.2.2 Dampness and heat-accumulation lung syndrome

Clinical manifestations : low or no fever, slight chills, fatigue, heavy head and body, muscle soreness, dry cough, low phlegm, sore throat, dry mouth, do not want to drink more, or accompanied by chest tightness, no sweat or sweating, Or vomiting and loss of appetite, diarrhea or sticky stool. The tongue is reddish, and the coating is white, thick and greasy or thin yellow, and the pulse is slippery or sloppy.

Recommended prescription : Betel nut 10g, apple 10g, Magnolia 10g, Zhimu 10g, Scutellaria baicalensis 10g, Bupleurum 10g, red peony 10g, forsythia 15g, Artemisia annua 10g (decocted later), 10g of green leaves, 10g of green leaves, 5g of raw licorice.

Suggested use : one dose daily, boiled with 400ml water, take it twice at morning and evening.

4.2.3 Moderate cases

4.2.3.1 Dampness and stagnation lung syndrome

Clinical manifestations : fever, low cough and sputum, or yellow sputum, suffocation, shortness of breath, bloating, and constipation. The tongue is dark red and fat ; the coating is greasy or yellow and the pulse is slippery or stringy.

Recommended prescription : raw ephedra 6g, bitter almond 15g, raw gypsum 30g, raw coix seed 30g, grass root 10g, patchouli 15g, Artemisia annua 12g, Polygonum cuspidatum 20g, verbena 30g, dried reed root 30g, gardenia 15g 15g of orange red, 10g of raw licorice.

Suggested use : one dose daily, boiled with 400ml water, take it twice at morning and evening.

Siti Khaerunnisa, Hendra Kurniawan, Rizki Awaluddin, Suhartati Suhartati, Soetjipto Soetjipto
Potential Inhibitor of COVID-19 Main Protease (M pro ) from Several Medicinal Plant Compounds by Molecular Docking Study
Preprint, posted on 13 March 2020

Potential Inhibitor of COVID-19 Main Protease (M pro) from Several Medicinal Plant Compounds by Molecular Docking Study

Abstract :

COVID-19, a new strain of coronavirus (CoV), was identified in Wuhan, China, in 2019. No specific therapies are available and investigations regarding COVID-19 treatment are lacking. Liu et al. (2020) successfully crystallised the COVID-19 main protease (M pro ), which is a potential drug target. The present study aimed to assess bioactive compounds found in medicinal plants as potential COVID-19 M pro inhibitors, using a molecular docking study. Molecular docking was performed using Autodock 4.2, with the Lamarckian Genetic Algorithm, to analyse the probability of docking. COVID-19 M pro was docked with several compounds, and docking was analysed by Autodock 4.2, Pymol version 1.7.4.5 Edu, and Biovia Discovery Studio 4.5. Nelfinavir and lopinavir were used as standards for comparison. The binding energies obtained from the docking of 6LU7 with native ligand, nelfinavir, lopinavir, kaempferol, quercetin, luteolin-7-glucoside, demethoxycurcumin, naringenin, apigenin-7-glucoside, oleuropein, curcumin, catechin, epicatechin-gallate, zingerol, gingerol, and allicin were -8.37, -10.72, -9.41, -8.58, -8.47, -8.17, -7.99, -7.89, -7.83, -7.31, -7.05, -7.24, -6.67, -5.40, -5.38, and -4.03 kcal/mol, respectively. Therefore, nelfinavir and lopinavir may represent potential treatment options, and luteolin-7-glucoside, demethoxycurcumin, apigenin-7-glucoside, oleuropein, curcumin, catechin, and epicatechin-gallate appeared to have the best potential to act as COVID-19 M pro inhibitors. However, further research is necessary to investigate their potential medicinal use.

Keywords : COVID-2019 ; M pro ; 6LU7 ; Medicinal Plant Compounds ; Docking

Mis en ligne par La vie re-belle
 25/05/2020
 http://lavierebelle.org/potentiel-antiviral-d-artemisia

 Documents

 Occurrence of some antiviral sterols in Artemisia annua
PDF 
 Plant Science
 Plant sterols and sterolins : a review of their immune-modulating properties
PDF 
 Altern Med Rev
 SARS Clinical trials on treatment using a combination of Traditional Chinese medicine and Western medicine
PDF 
 WHO
 Identification of natural compounds with antiviral activities against SARS-associated coronavirus
PDF 
 Antiviral Research

Bibliographie : Potentiel antiviral d’Artemisia annua L. et Artemisia afra Jacq.

Ce dossier regroupe les publications concernant le potentiel antiviral d’Artemisia annua L. et Artemisia afra Jacq.

Les articles 1

Cet article présente et permet l’accès aux recherches publiées relatives aux propriétés antibactériennes, antivirales, immunomodulatrices et immunoprotectrices (...)
Hébergé par La Vie Re-Belle | Community