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The anti-hepatitis B activity of 3,4-O-dicaffeoylquinic acid isolated from Laggera alata was studied using the d-galactosamine-
(d-GalN-) induced hepatocyte damage model, HepG2.2.15 cells, and with HBV transgenic mice. In vitro results showed that 3,4-
O-dicaffeoylquinic acid improved HL-7702 hepatocyte viability and markedly inhibited the production of HBsAg and HBeAg.
At a concentration of 100 μg/mL, its inhibitory rates on the expression levels of HBsAg and HBeAg were 89.96% and 81.01%,
respectively. The content of hepatitis B virus covalently closed circular DNA (HBV cccDNA) in HepG2.2.15 cells was significantly
decreased after the cells were treated with the test compound. In addition, 3,4-O-dicaffeoylquinic acid significantly increased the
expression of heme oxygenase-1 (HO-1) in HepG2.2.15 cells. In vivo results indicated that the test compound at concentrations
of 100 μg/mL significantly inhibited HBsAg production and increased HO-1 expression in HBV transgenic mice. In conclusion,
this study verifies the anti-hepatitis B activity of 3,4-O-dicaffeoylquinic acid. The upregulation of HO-1 may contribute to the
anti-HBV effect of this compound by reducing the stability of the HBV core protein, which blocks the refill of nuclear HBV
cccDNA. Furthermore, the hepatoprotective effect of this compound may be mediated through its antioxidative/anti-inflammatory
properties and by the induction of HO-1 expression.

1. Introduction

Hepatitis B is an infectious illness caused by hepatitis B virus
(HBV), which infects the liver of Hominoidea, including
humans, and causes an inflammation reaction called hep-
atitis. Although there is an effective vaccine against HBV,
chronic infection poses a huge health burden on the global
community [1]. Its prevalence approaches 10% in hyperen-
demic areas such as Southeast Asia, China, and Africa [2].
Furthermore, approximately one-third of the world’s popu-
lation (more than 2 billion people) have been infected with
the hepatitis B virus, which includes 350 million chronic
carriers of the virus [3]. Some antiviral agents such as
interferon-α and nucleosides (including lamivudine and
adefovir dipivoxil) have been approved for the treatment of
chronic HBV infection. However, a significant number of
patients develop drug resistance after long-term use of these
agents [4]. Therefore, there is a pressing need to continue
developing safer and more effective anti-hepatitis B agents.

The development of natural substances as antiviral agents
is thought to be a promising approach towards solving this
public health concern [5].

Laggera alata belongs to the genus Laggera (Asteraceae)
and is distributed mainly among the tropical areas of Africa,
Southeast Asia, and China. This plant has been used as a
folk medicine for over 300 years, especially for the treatment
of some ailments associated with hepatitis [6]. Most of the
previous studies examining L. alata have focused on its folk
use and phytochemical analyses [7–9]. In previous inves-
tigations, we examined the anti-inflammatory and hepato-
protective activities of an L. alata extract containing dicaf-
feoylquinic acids and confirmed its potent effects [10,
11]. In this study, we utilized the d-galactosamine- (d-
GalN-) induced HL-7702 hepatocyte damage model, HBV-
transfected HepG2.2.15 cells, and HBV transgenic mice to
evaluate the anti-hepatitis B activity and possible hepatopro-
tective mechanisms of 3,4-O-dicaffeoylquinic acid isolated
from L. alata (Figure 1). The study is the first to demonstrate
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Figure 1: Structure of 3,4-O-dicaffeoylquinic acid isolated from L.
alata.

that 3,4-O-dicaffeoylquinic acid possesses an anti-hepatitis B
activity.

2. Materials and Methods

2.1. Reagents. Fetal bovine serum, Dulbecco’s modified
Eagle’s medium (DMEM) and 1640 medium were purchased
from Gibco-BRL (Grand Island, NY, USA). 3-(4,5-Dimethyl-
thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), sili-
binin, and d-galactosamine were purchased from Sigma
Chemical Co., USA. Lamivudine was provided by Glax-
oSmithKline Investment Co., Ltd. The HBV DNA PCR-
fluorescence quantitation kit and the enzyme immunoassay
(EIA) kits for the detection of HBsAg, and HBeAg were
obtained from Shanghai Kehua Bio-Engineering Co., Ltd.
The Plasmid Mini Preparation kit was obtained from Axygen
Biosciences. Plasmid safe ATP-dependent DNase was pur-
chased from EPICENTRE Biotechnologies. The TA cloning
kit was obtained from Invitrogen Corporation. The heme
oxygenase-1 ELISA kit was purchased from Beijing Yonghui
Biological Technology Co., Ltd. Conventional PCR reagents
were obtained from Shanghai Sangon Biological Engineering
Technology and Service Co., Ltd. The HBsAg immunohisto-
chemical detection kit was purchased from Boster Biological
Technology Co., Ltd., China. All other reagents were of the
highest available commercial grade.

2.2. Compound. 3,4-O-Dicaffeoylquinic acid was isolated
from Laggera alata and its structure was authenticated
according to a previously reported method [10]. All of
the Laggera alata (D. Don) Sch.-Bip ex Olivier was col-
lected from Yunnan Province, China. A voucher specimen
(ZY982003LA) was deposited in the herbarium of the Col-
lege of Pharmaceutical Sciences, Zhejiang University, China.
3,4-O-Dicaffeoylquinic acid (HPLC purity ≥ 98%) was
initially dissolved in dimethyl sulfoxide (DMSO) and further
diluted in cell culture medium to achieve a final concentra-
tion of 0.1% DMSO, which was not toxic to either HL-7702
hepatocytes or HepG2.2.15 cells.

2.3. Cells and Transgenic Mice. HL-7702 hepatocytes were
maintained in 1640 medium containing 2 mM glutamine

and 10% (v/v) fetal bovine serum at 37◦C (95% humidity,
5% CO2). HepG2.2.15 cells were maintained in DMEM con-
taining 2 mM glutamine, 10% (v/v) fetal bovine serum, and
380 μg/mL of G418 at 37◦C (95% humidity, 5% CO2). HBV
transgenic mice were generated in the Shanghai Research
Center for Model Organisms by routine microinjection
of the linearized HBV DNA of clone no. 25-8 (GenBank
ID: AF461363) into fertilized eggs of C57BL/6J mice [12].
The transgenic mice were kept in a room maintained at
22 ± 2◦C and at relative humidity between 40% and 70%.
The experimental protocol was approved by the Animal
Ethics Committee of Zhejiang University, in accordance with
“Principles of Laboratory Animal Care and Use in Research”
(Ministry of Health, Beijing, China).

2.4. Hepatoprotective Assay against d-GalN-Induced Hepato-
cyte Damage. HL-7702 hepatocytes were transferred to 96-
well plates at a density of approximately 1.0 × 105 cells/mL.
Cytotoxicity induced by the test compound was measured
using the MTT assay as reported previously [11]. Hepatocyte
injury was induced by d-GalN in the following manner:
after HL-7702 hepatocytes were incubated for 8 h with
80 mM d-GalN, the cells were then cultured for another
48 h in fresh culture medium containing 1–100 μg/mL 3,4-O-
dicaffeoylquinic acid. Hepatocyte viability was detected using
the MTT assay. The hepatoprotective effect of the test com-
pound was assessed by the cell viability assay and expressed
as percent protection. Silibinin was used as the reference drug
at a concentration of 100 μg/mL.

2.5. Anti-HBV Assay in HepG2.2.15 Cells. Cytotoxicity
induced by 3,4-O-dicaffeoylquinic acid was analyzed as fol-
lows: HepG2.2.15 cells were transferred to 96-well plates at a
concentration of 1.0×105 cells/mL. Different concentrations
of the test compound were applied to the culture wells
in triplicate. After the cells were incubated for 8 days, the
MTT assay was carried out as described previously [11].
To measure the effect of 3,4-O-dicaffeoylquinic acid on the
expression of HBV antigens and HBV DNA, HepG2.2.15
cells were treated with various concentrations of the test
compound in the 96-well plates. The medium with the com-
pound was replaced every 4 days. On the fourth day, the
replaced medium was assayed for HBsAg and HBeAg. On the
eighth day, the replaced medium was measured for HBsAg,
HBeAg and HBV DNA. Lamivudine was used as the reference
drug. The levels of HBsAg and HBeAg in the replaced
culture supernatants were determined by HBsAg and HBeAg
enzyme-immunoassay kits, respectively. The results were
read at 450 nm by a multiwell plate reader (MULTISKAN
MK3, Thermo Fisher Scientific Inc., USA). The HBV viral
load in the replaced culture supernatants was detected with
a HBV DNA PCR-fluorescence quantitation kit as follows:
HBV DNA was extracted and amplified with a Bio-Rad iQ5
real-time PCR system. The forward primer was 5-CCG TCT
GTG CCT TCT CAT CTG-3, the reverse primer was 5-AGT
CCA AGA GTA CTC TTA TAG AAG ACC TT-3, and the
Taqman probe was FAM-CCG TGT GCA CTT CGC TTC
ACC TCT GC. The thermal program comprised of an initial
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Table 1: Cytotoxicity of 3,4-dicaffeoylquinic acid in HL-7702 hepatocytes.

Groups Concentration (μg/mL) Absorbency (570 nm) Cell survival (%)

Vehicle — 1.275± 0.042 100

Silybin 100 1.235± 0.069 96.86

50 1.238± 0.038 97.10

10 1.259± 0.048 98.74

3,4-Dicaffeoylquinic acid 100 1.230± 0.048 96.47

50 1.246± 0.027 97.72

10 1.255± 0.046 98.43

All determinations were performed in six replicates, and values were expressed as mean ± SD. No significant difference compared with the vehicle control.

denaturation at 94◦C for 2 min followed by 40 amplification
cycles with each of the two following steps: 95◦C for 5 s and
60◦C for 30 s. A plasmid containing the full-length insert of
the HBV genome was used to prepare the standard curve.

2.6. Assay for Elimination HBV cccDNA in HepG2.2.15 Cells.
After HepG2.2.15 cells were incubated for 48 h in 6-well
plates at a density of 1.0×105 cells/mL, new DMEM medium
containing different concentrations of the test compound
(50, 25, and 10 μg/mL) was added. Three parallel controls
were performed, including positive controls with oxymatrine
(50 μg/mL), a vehicle control of 0.1% DMSO, and a normal
control with no antiviral drug. The medium with the
compound was replaced every 3 days. On the sixth day, the
cells of each well were harvested. Based on the similarity of
cccDNA and plasmid structures, the cell pellet containing 1.0
× 106 cells was extracted with the Mini Plasmid Extraction
Kit. The extracted plasmid was further purified by plasmid
safe ATP-dependent DNase to remove the residual HBV
relaxed circular DNA. Hepatitis B virus covalently closed
circular DNA (HBV cccDNA) was detected by selective real-
time fluorescent quantitative PCR with specific primers and
a Taqman MGB probe [13]. The forward primer was 5-TGA
ATC CTG CGG ACG ACC-3, the reverse primer was 5-ACA
GCT TGG AGG CTT GAA CAG-3 and the Taqman probe
was 5-FAM-CCT AAT CAT CTC TTG TTC ATG TC-MGB-3.
According to the structural differences between cccDNA and
rcDNA, only the cccDNA should have been amplified with
the designed primers and probe.

2.7. Assay for Induction of HO-1 of HepG2.2.15 Cell. After
HepG2.2.15 cells were incubated for 48 h in 6-well plates at
a density of 1.0 × 105 cells/mL, the cells were treated with
various concentrations of test compound, and the medium
with the compound was replaced every 3 days. Oxymatrine
was used as the reference drug. On the sixth day, the cells
were collected, and their heme oxygenase-1 (HO-1) levels
were determined by an HO-1 ELISA kit according to the
protocol provided with the kit. The absorbency was mea-
sured at 450 nm by a multiwell plate reader. The content of
HO-1 in these cells was then determined by comparing the
absorbency of the samples to the standard curve.

2.8. Anti-HBV Assay in HBV Transgenic Mice. HBV trans-
genic mice were divided into four groups. The vehicle

control group received a normal saline solution at a dose of
10 mL/kg. The drug control group received lamivudine at a
dose of 100 mg/kg. Experimental drug groups received 3,4-
O-dicaffeoylquinic acid at doses of 50 and 100 mg/kg. The
vehicle and drugs were administered orally to the different
groups of mice once per day for 30 days. Five hours after the
last administration, the mice were briefly anesthetized with
ether, and blood samples were taken from the orbital sinus.
The serum was separated for the measurements of HBsAg,
and HO-1. The serum HBsAg and HO-1 levels were deter-
mined using the HBsAg and HO-1 detection kits accord-
ing to the respective protocols provided with the ELISA
kits. For histopathological analysis, formalin-fixed, paraffin-
embedded liver specimens were routinely stained with hema-
toxylin and eosin (HE). The liver HBsAg expression level
was determined using the HBsAg immunohistochemical
detection kit according to the manufacturer’s instructions.
The pathological and immunohistochemical changes were
evaluated and photographed under the microscope.

2.9. Statistical Analysis. Data were expressed as the mean ±
standard deviation. Statistical analyses were carried out by
the application of one-way analysis of variance (ANOVA)
and student’s t-test. P < 0.05 was chosen as the criterion for
statistical significance.

3. Results

3.1. Effect of 3,4-O-Dicaffeoylquinic Acid on d-GalN-Induced
Hepatocyte Damage. The cytotoxicity test indicated that
3,4-O-dicaffeoylquinic acid was not toxic to HL-7702
hepatocytes at concentrations of 10–100 μg/mL (Table 1).
Hepatocyte injury was induced by exposure to 80 mM d-
GalN, and the cells were subsequently treated with 3,4-O-
dicaffeoylquinic acid. The results show that test compound
improved cell viability at concentrations of 10–100 μg/mL
(Table 2).

3.2. Anti-HBV Activity of 3,4-O-Dicaffeoylquinic Acid in
HepG2.2.15 Cells. After hepG2.2.15 cells were treated with
3,4-O-dicaffeoylquinic acid for 8 days, the cell viability was
determined using the MTT assay. The results indicated that
3,4-O-dicaffeoylquinic acid was not cytotoxic at concentra-
tions of 10–100 μg/mL (Table 3). The HBsAg and HBeAg
levels in culture supernatants were assayed after the cells were
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Table 2: Effect of 3,4-dicaffeoylquinic acid on the survival of d-GalN injured HL-7702 hepatocytes.

Groups Concentration (μg/mL) Absorbency (570 nm) Protection rate (%)

Vehicle — 1.289± 0.055∗∗ —

d-GalN-control — 0.769± 0.053 —

Silybin-d-GalN 100 0.868± 0.036∗ 18.90

50 0.832± 0.055 12.07

10 0.810± 0.031 7.79

3,4-Dicaffeoylquinic acid- d-GalN 100 0.846± 0.044 14.77

50 0.812± 0.031 8.18

10 0.801± 0.019 6.16

Silybin was used as the positive control. 0.1% DMSO was used as the vehicle control. Values are expressed as the means ± SD of four replicates. Protection
rate (%) = (the mean absorbency value in experimental group − the mean absorbency value in model control group)/(the mean absorbency value in negative
control group − the mean absorbency value in model control group) × 100%. ∗P < 0.05 and ∗∗P < 0.01 represent the significance of the difference from the
d-GalN control.

Table 3: Cytotoxicity of 3,4-dicaffeoylquinic acid in hepG2.2.15 cells.

Groups Concentration (μg/mL) Absorbency (570 nm) Cell survival (%)

Vehicle — 0.922± 0.031 100

Lamivudine 100 0.906± 0.101 98.26

50 0.912± 0.092 98.92

10 0.918± 0.141 99.57

3,4-Dicaffeoylquinic acid 100 0.893± 0.061 96.85

50 0.895± 0.105 97.07

10 0.909± 0.078 98.59

All determinations were performed in six replicates, and values were expressed as mean ± SD. No significant difference compared with the vehicle control.

incubated with the test compound for 4 days (Table 4). The
results showed that the test compound significantly inhibited
HBsAg expression at concentrations of 50–100 μg/mL and
markedly repressed HBeAg expression at a concentration of
100 μg/mL.

The HBsAg, HBeAg and HBV DNA levels in culture
supernatants were measured after the cells were treated with
the test compound for 8 days (Table 5). At concentrations
of 50–100 μg/mL, the test compound significantly inhibited
the expression of HBsAg and HBeAg. At a concentration of
100 μg/mL, the test compound inhibited the expression rates
of HBsAg and HBeAg by 89.96% and 81.01%, respectively.

3.3. Effect of 3,4-O-Dicaffeoylquinic Acid on HBV cccDNA
Content of HepG2.2.15 Cells. The effect of 3,4-O-dicaffe-
oylquinic acid on the level of HBV cccDNA is shown in
Table 6. The results indicated that 3,4-O-dicaffeoylquinic
acid significantly reduced the HBV cccDNA content of
HepG2.2.15 cells at a concentration of 50 μg/mL. Further-
more, the test compound exhibited a larger effect than the
reference drug oxymatrine.

3.4. Effect of 3,4-O-Dicaffeoylquinic Acid on HO-1 Expres-
sion in HepG2.2.15 Cell. The expression level of HO-1
in HepG2.2.15 cells was determined after the cells were
treated with various concentrations of test compound for
6 days (Table 7). At concentrations of 10–50 μg/mL, 3,4-O-
dicaffeoylquinic acid significantly increased HO-1 expres-
sion. Oxymatrine, which was the reference drug, showed a
similar effect.

3.5. Anti-HBV Activity of 3,4-O-Dicaffeoylquinic Acid in
HBV Transgenic Mice. The anti-HBV activity of 3,4-O-
dicaffeoylquinic acid was determined in HBV transgenic
mice (Table 8). These results show that the test compound
significantly reduced the serum HBsAg level at concen-
trations of 50–100 μg/mL. Meanwhile, the test compound
markedly induced HO-1 expression at a concentration of
100 μg/mL. Histological analysis revealed almost normal
lobule architecture and slight swelling of liver cells, but no
obvious pathological changes were observed in the control
and drug-treated mice (Figure 2). Immunohistochemical
detection indicated that the strongest HBsAg-positive signals
were detected in the control group, and the different concen-
trations of test compound clearly repressed the expression of
liver HBsAg (Figure 3).

4. Discussion

Patients with hepatitis B are often treated with antiviral
agents, hepatoprotective drugs, and immunomodulatory
drugs. Typically, the beneficial role of hepatoprotectors in
viral hepatitis is achieved through their inhibitory action on
the inflammatory and cytotoxic cascades induced by viral
infection. In addition, these agents can also improve the
regeneration process and normalize liver enzymes through
their effects on protein synthesis [14]. Among the numerous
models of experimental hepatitis, d-GalN-induced liver
damage is very similar to human viral hepatitis in its
morphological and functional features [15]. d-GalN reduces
the intracellular pool of uracil nucleotides in hepatocytes,
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Table 4: Anti-HBV activity of 3,4-O-dicaffeoylquinic acid in HepG2.2.15 cells. (After the cells were treated with the test compound for 4
days.)

Groups Concentration (μg/mL)
HBsAg HBeAg

Absorbency Inhibition (%) Absorbency Inhibition (%)

Vehicle — 1.175± 0.085 — 2.947± 0.273 —

Lamivudine
100 1.058± 0.101 10.01 3.132± 0.034 —

50 1.097± 0.083 6.67 3.140± 0.039 —

10 1.197± 0.116 — 3.274± 0.100 —

3,4-Dicaffeoylquinic acid
100 0.585± 0.024∗∗ 50.23 2.070± 0.198∗ 29.77

50 0.840± 0.020∗∗ 28.50 2.505± 0.077 15.02

10 1.111± 0.096 5.48 2.750± 0.250 6.70

Lamivudine was used as the positive control in the anti-HBV assay. 0.1% DMSO was used as the vehicle control. Inhibition (%) = (the mean absorbency value
in negative control group − the mean absorbency value in experimental group)/(the mean absorbency value in negative control group) × 100%. Data are
expressed as the means ± SD of three independent experiments. ∗P < 0.05 and ∗∗P < 0.01 compared with the vehicle group.

(a) (b)

(c) (d)

Figure 2: Histopathological changes of liver tissue from HBV transgenic mice (HE × 40). (a) A control untreated HBV transgenic mouse;
(b) a lamivudine (100 mg/kg) treated HBV transgenic mouse; (c) a 3,4-dicaffeoylquinic acid (100 mg/kg) treated HBV transgenic mouse;
(d) a 3,4-dicaffeoylquinic acid (50 mg/kg) treated HBV transgenic mouse. (a), (b), (c), and (d) do not show obvious pathological changes,
which is probably related to the immunotolerance of HBV transgenic mice to HBV.

thereby inhibiting the synthesis of RNA and proteins [16].
Oxygen-derived free radicals released from activated hepatic
macrophages are the primary cause of d-GalN-induced
liver damage [17]. In previous studies, the potent anti-
inflammatory and hepatoprotective activities of an L. alata

extract containing dicaffeoylquinic acids were confirmed
[10, 11]. Furthermore, dicaffeoylquinic acids exhibit a variety
of pharmacological activities, such as antioxidative, anti-
inflammatory, and antiviral effects [18–20]. In the current
study, 3,4-O-dicaffeoylquinic acid protected d-GalN-injured
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(a) (b)

(c) (d)

Figure 3: Immunohistochemical staining of HBsAg in the liver of HBV transgenic mice (×40). (a) A control untreated HBV transgenic
mouse showing the positive expression of HBsAg (brown stain); (b) a lamivudine (100 mg/kg) treated HBV transgenic mouse; (c) a 3,4-
dicaffeoylquinic acid (100 mg/kg) treated HBV transgenic mouse; (d) a 3,4-dicaffeoylquinic acid (50 mg/kg) treated HBV transgenic mouse.
(b), (c), and (d) show clear inhibition of HBsAg expression.

Table 6: Effect of 3,4-dicaffeoylquinic acid on the HBV cccDNA
content of HepG2.2.15 cells.

Groups
Concentration

(μg/mL)
HBV cccDNA

(Log) (copy/μL)

Normal — 2.79± 0.03

Vehicle — 2.73± 0.02

Oxymatrine 50 2.59± 0.12∗

3,4-Dicaffeoylquinic acid 50 2.54± 0.05∗∗

25 2.71± 0.08

10 2.83± 0.03

Oxymatrine was used as the positive control. 0.1% DMSO was used as the
vehicle control. Data are expressed as the means ± SD of three independent
experiments. ∗P < 0.05 and ∗∗P < 0.01 compared with the vehicle group.

hepatocytes, thereby implying that its antioxidative and
anti-inflammatory properties may have contributed to the
amelioration of hepatocyte damage.

HepG2.2.15 cells are derived from human hepatoblas-
toma HepG2 cells that were transfected with a plasmid con-
taining HBV DNA. These cells can stably secrete viral par-
ticles in culture medium [21]. The presence of HBsAg is the

Table 7: Effect of 3,4-dicaffeoylquinic acid on HO-1 expression
in HepG2.2.15 cells. (After the cells were treated with the test
compound for 6 days.)

Groups
Concentration

(μg/mL)
HO-1 content
(ng/g protein)

Normal — 36.00± 0.45

Vehicle — 33.61± 1.51

Oxymatrine 50 57.70± 3.21∗∗

25 51.09± 4.80∗∗

10 49.49± 1.99∗∗

3,4-Dicaffeoylquinic
acid

50 57.18± 3.37∗∗

25 48.31± 2.52∗∗

10 45.12± 0.87∗∗

Oxymatrine was used as the positive control. 0.1% DMSO was used as the
vehicle control. Data are expressed as the means ± SD of three independent
experiments. ∗P < 0.05 and ∗∗P < 0.01 compared with the vehicle group.

most common marker of HBV infection, whereas HBeAg
is used as an ancillary marker primarily to indicate active
HBV replication and associated progressive liver disease [22].
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Table 8: Anti-HBV activity of 3,4-O-dicaffeoylquinic acid in HBV transgenic mice.

Groups Concentration (mg/kg) HBsAg
HO-1 (ng/L)

P/N

Vehicle — 55.33± 1.10 609.62± 39.54

Lamivudine 100 56.82± 1.67 646.53± 29.19

3,4-Dicaffeoylquinic acid
100 53.16± 1.15∗∗ 676.31± 31.81∗

50 53.62± 1.49∗ 630.51± 56.48

Lamivudine was used as the positive control in the anti-HBV assay. Normal saline solution was used as the vehicle control. P/N (positive-to-negative) ratios
were determined as the mean absorbency value of the test compounds divided by that of the negative control. Data are expressed as the means ± SD of four
samples. ∗P < 0.05 and ∗∗P < 0.01 compared with the vehicle group.

Hepadnaviruses have a relaxed circular DNA genome. Fol-
lowing infection of hepatocytes, this DNA is transported
to the nucleus and converted to a covalently closed form
(cccDNA) that serves as a transcriptional template. Viral
DNA is synthesized within nucleocapsids via reverse tran-
scription of a viral RNA known as the pregenome [23].
Nucleocapsids containing mature forms of viral DNA are
packaged into viral envelopes and secreted from the cell.
cccDNA does not replicate; however, additional copies (up to
50 per cell) may be formed from viral DNA synthesized in the
cytoplasm [24]. The cccDNA plays a key role in the life cycle
of the virus and permits the persistence of infection. The
formation of cccDNA is inhibited by viral envelope proteins
[25]. In this study, 3,4-O-dicaffeoylquinic acid significantly
inhibited expression of HBsAg and HBeAg in HepG2.2.15
cells. Although the response of lamivudine on HBV DNA
replication is on the low side, its suppression on HBV DNA
replication is statistically significant when compared to the
vehicle group. Under the different experimental conditions,
the test results of the same compound may have certain dif-
ference because of the different cell states. The low response
of HBV DNA to lamivudine does not affect the judgement of
the results, only if the anti-HBV activities of lamivudine and
test compound are measured and compared under the same
test condition. Furthermore, the test compound also signif-
icantly reduced the HBV cccDNA content of HepG2.2.15
cells and its effect was stronger than the reference drug
oxymatrine, thereby indicating the anti-HBV effect of this
compound was probably related to inhibiting the formation
of cccDNA.

HBV transgenic mice with a known genetic background
and a well-characterized HBV isolate have been employed as
an animal model of the HBV-carrier state and are thought
to be a good model to evaluate the anti-HBV efficacy of
candidate compounds in vivo [12, 26]. Based on in vitro
results, we further studied the anti-hepatitis B activity of
3,4-O-dicaffeoylquinic acid in HBV transgenic mice. The
results indicated that 3,4-O-dicaffeoylquinic acid signifi-
cantly inhibited the serum and liver HBsAg levels and sig-
nificantly increased HO-1 expression in these transgenic
mice, which was in good agreement with the results of in
vitro research. Upon histopathological analysis, no obvious
pathological changes were found in both the control and
experimental groups of mice, which is probably related to the
immunotolerance of HBV transgenic mice to HBV. Because
these transgenic mice are immunotolerant to HBV, they did

not present with any of the disease signs that would normally
be associated with immunopathological responses [27].

Heme oxygenases catalyze the initial and rate-limiting
step in the oxidative degradation of heme. Among the three
known heme oxygenases, HO-1 is the only inducible form of
these enzymes [28]. Overexpression of HO-1 protects organs
and/or tissues from immune-mediated organ injury, which
can occur either through the prevention of oxidative damage
or via local immunomodulatory influence on inflammatory
cells [29]. Induction of HO-1 has been shown to be beneficial
in immune-mediated liver damage. In addition, liver injury
was significantly reduced after HO-1 induction in an acute
hepatitis B model [30]. In addition to its hepatoprotective
effect, HO-1 exhibited a pronounced antiviral effect, which
was confirmed in stably HBV-transfected hepatoma cells
and in persistently HBV replicating transgenic mice. HO-1
induction repressed HBV replication directly in hepatocytes
at a posttranscriptional step by reducing the stability of the
HBV core protein, which resulted in blocking the refill
of nuclear HBV cccDNA. Small interfering RNAs directed
against HO-1 have demonstrated that this effect is dependent
on the expression level of HO-1 [30]. Therefore, the induc-
tion of HO-1 might be a novel therapeutic option for
inflammatory flares of hepatitis B. In this study, 3,4-O-
dicaffeoylquinic acid significantly increased the expression of
HO-1 in vitro and in vivo, thereby suggesting that the hep-
atoprotective and anti-HBV effects of 3,4-O-dicaffeoylquinic
acid were achieved by HO-1 induction.

In conclusion, this study verifies the in vitro and in vivo
anti-hepatitis B effects of 3,4-O-dicaffeoylquinic acid isolated
from L. alata. The upregulation of HO-1 may contribute
to the anti-HBV effect of this compound by reducing the
stability of the HBV core protein and by blocking the refill
of nuclear HBV cccDNA. Additionally, the hepatoprotective
effect of this compound was mediated by its antioxidative/
anti-inflammatory properties and the induction of HO-1.
Therefore, 3,4-O-dicaffeoylquinic acid should be considered
a potential candidate or lead compound for the development
of novel antiviral agents.
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