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ABSTRACT 

Mycobacterium tuberculosis and Human Immuno-Deficiency Virus (HIV) have a high 

prevalence in South Africa. The development and spread of drug resistant 

tuberculosis is a serious problem which is exacerbated by tuberculosis (TB) co-

infection in HIV patients. Traditional medicinal plants like Annona muricata and 

Artemisia afra are used for respiratory ailments and antiviral therapies respectively. 

The aim of this study was to evaluate Annona muricata (ethanolic extract) and 

Artemisia afra (ethanolic and aqueous extracts) for inhibitory activities against M. 

tuberculosis and HIV. In vitro bioassays for anti-TB activity included: microplate 

alamar blue assay (MABA), flow cytometry and ρ-iodonitrotetrazolium chloride 

assays while anti-HIV activity was determined using an HIV-1 reverse transcriptase 

colorimetric ELISA kit and an HIV-1 integrase colorimetric immunoassay. Cytotoxicity 

of plant extracts were assessed by the MTT assay on Chang Liver and HepG2 cells. 

Potential synergistic effects were determined using the basis of Combination Index. 

Potential interactions of plant extracts with drug metabolic pathways were evaluated 

with the Glutathione-S-Transferase assay kit as well as the CYP3A4 assay kit. A. 

muricata ethanolic extract exhibited anti-TB activity with MIC 125 µg/mL. MABA was 

shown to be the most sensitive and effective method for the detection of anti-TB 

activity. Artemisia afra aqueous extract showed HIV-1 reverse transcriptase inhibition 

exhibiting ˃85% inhibition at 1 mg/mL while the ethanolic extracts of A. afra and A. 

muricata showed inhibition of HIV-1 integrase activity at ˃86.8% and ˃88.54% 

respectively at concentrations >0.5 - 4 mg/mL. The aqueous extract of A. afra 

displayed inhibition of HIV-1 integrase ˃52.16% at 0.5 mg/mL increasing to 72.89% 

at 4 mg/ml of the extract. A. muricata was cytotoxic at an IC50 of 30 µg/mL and 77 

µg/mL on Chang Liver and HepG2 cells respectively, whilst A. afra aqueous and 

ethanol extracts were not cytotoxic to both cell lines. The ethanolic extract of A. 

muricata showed both antagonistic and synergistic properties at various IC values, 

when used in conjunction with rifampicin. A. afra ethanolic extract interrupted GST 

activity while aqueous extracts of A. afra and A. muricata had a slight effect. All 

extracts interrupted CYP3A4 activity, however the ethanolic extracts of A. muricata 

and A. afra showed greater inhibition than the aqueous extract of A. afra. These 

extracts should be investigated further as they could be an important source of 

compounds for treatment of M. tuberculosis and HIV respectively.  
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1 

CHAPTER ONE 

 

LITERATURE REVIEW 

 

1.1 INTRODUCTION 

Mycobacterium tuberculosis and Human Immuno-Deficiency Virus (HIV) have a high 

prevalence in South Africa. Despite the fact that more than 40 years has been placed 

behind anti- tuberculosis (TB) chemotherapy, TB still remains one of the main 

infectious killers worldwide (Luo et al., 2011). There were 9.4 million new cases 

(including 1.1 million cases among people with HIV) and 1.7 million deaths from TB 

(including 380 000 people with HIV) in 2009 (WHO, 2010). HIV has been estimated to 

have infected 34 million people worldwide, where South Africa’s HIV epidemic remains 

the largest in the world, with an estimated 5.6 million HIV positive people as of 2009. 

This exceeds the number of people living with HIV in the entire Asian region 

(www.who.int/hiv/pub/progress_report2011/en/index.html). 

 

The use or mis-use of anti-tuberculosis drugs has led to an increasing prevalence of 

multi-drug resistant (MDR) and extreme drug resistant (XDR) M. tuberculosis strains, 

emphasising the need for novel and improved drugs for treatment of TB. There is a 

renewed and increasing interest in plant medicine as these are seen as potential 

sources of new compounds for drug development (Luo et al., 2011).  

 

Many plant species are used in traditional South African medicine to alleviate 

symptoms of TB and several lead compounds have been reported for further research 

following in vitro antimycobacterial activity evaluation. However, more research is 

needed on the assessment of anti-mycobacterial efficacy of plants against M. 

tuberculosis both in vitro and in vivo (McGaw et al., 2008). Current antiretroviral drugs 

are vitally important to improve the quality and prolong the life of HIV/AIDS patients. 

However, these drugs have many disadvantages including resistance, toxicity, limited 

availability, high cost and lack of any curative effect. Thus, it is important to search for 

improved antiretroviral agents which can be added to or replace the current drugs in 

the anti-HIV spectrum (Klos et al., 2009).  

 

http://www.who.int/hiv/pub/progress_report2011/en/index.html
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In this study, two plants, namely Annona muricata and Artemisia afra were 

investigated for inhibitory activity against M. tuberculosis and HIV. A. afra is one of the 

most popular and commonly used herbal medicines in Southern Africa. However, only 

limited research has been conducted on this species which is rich in terpenes. It has 

been reported that A. afra exhibits some antiviral activity or immune boosting 

properties (Liu et al., 2009). There are few reports on A. muricata, which indicate that 

all parts of the tree have been used to treat multiple illnesses (Boyom et al., 2011). 

The leaves are especially used as an antispasmodic, sedative, also for respiratory 

tract conditions (coughs, grippe, asthma, catarrh and asthenia) (Asprey and Thornton, 

1955). 

 

Due to a variety of compounds that could possibly be present in A. afra and A. 

muricata, it is important to understand what major compounds are present in these 

plants and the potential effects they could have on the existing treatment drug-

metabolizing pathways. Many HIV/AIDS patients use traditional plant remedies in 

conjunction with drug therapies provided by clinics and hospitals which may result in 

drug-herbal pharmacokinetic and pharmacodynamic interactions (Brown et al., 2008; 

Balayssac et al., 2005; Patel et al., 2011). Some pharmacokinetic interactions include 

changes in the absorption of the co-administered drug, thus affecting its bioavailability, 

its therapeutic effectiveness or by producing drastic side effects (Brown et al., 2008; 

Balayssac et al., 2005). 

 

1.2 MYCOBACTERIUM TUBERCULOSIS 

1.2.1 Epidemiology and Pathogenesis 

Tuberculosis in humans is caused by M. tuberculosis, which is a non-motile, rod-

shaped bacterium (2 - 4 µm in length and 0.2 - 0.5 µm in width), with non-pathogenic 

forms being found as part of the normal microflora of humans. M. tuberculosis has 

been classified as a facultative intracellular parasite, with a generation time of between 

12 - 18 hours (Black, 2011). Tuberculosis can be diagnosed, by clinical evaluation 

(fever, night sweats, loss of weight and coughing), the tuberculin skin test, chest X-

rays and microbiological analysis (Dev Pandey et al., 2008 and Van Helden et al., 

2006). 
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Tuberculosis is acquired by the inhalation of respiratory secretions containing tubercle 

bacilli. M. tuberculosis multiplies slowly within the host’s macrophages stimulating a 

host immune response, resulting in large amounts of fluid being released into the lung 

tissue producing pneumonia-like symptoms. In some instances, M. tuberculosis can 

enter the lymphatic and circulatory systems, which can lead to the perforation of blood 

vessels resulting in the production of bloody sputa, one of the most important and 

defining symptoms of tuberculosis. Extrapulmonary tuberculosis can be found within 

the urogenital tract, meninges, lymphatic system, spleen and bones, and the spinal 

cord (Bauman, 2011). 

 

South Africa is ranked third in the world with tuberculosis infections and is one of the 

22 high burden countries that contribute approximately 80% to the total global TB 

cases. The development and spread of drug resistant tuberculosis is a serious 

problem for South Africa, and is responsible for the largest number of multi-drug 

resistant TB (MDR-TB) cases in the world and the largest reported outbreak of 

extensively drug resistant TB (XDR-TB) (WHO, 2010). The total number of MDR- and 

XDR-TB cases recorded for the different provinces of South Africa, during 2004 - 

2011, were Limpopo (MDR-TB: 943 and XDR-TB: 27), Western (MDR-TB: 11946 and 

XDR-TB: 386) and Eastern Cape (MDR-TB: 9154 and XDR-TB: 962); KwaZulu-Natal 

(MDR-TB: 11393 and XDR-TB: 1499) and Gauteng (MDR-TB: 6994 and XDR-TB: 

237) (Koornof et al., 2011 and www.doh.gov.za/docs/policy/2011/policy_TB.pdf). 

 

1.2.2 Treatment and Drug Resistant Tuberculosis (TB) 

Drug-resistant tuberculosis is defined as the resistance of M. tuberculosis to at least 

one first-line anti-tuberculosis drug (CDC, 2010). Likewise extensively drug resistant 

TB (XDR-TB) is defined as resistance to at least rifampicin and isoniazid (MDR-TB), in 

addition to any fluoroquinolone, and at least one of the three following injectable drugs 

capreomycin, kanamycin, and amikacin used for MDR-TB treatment (Streicher et al., 

2012). The treatment of active tuberculosis involves the use of one or more drugs, 

administered for a minimum of six months under strict clinical management (Bapela et 

al., 2006; Matsumoto et al., 2006).  

 

The standard first-line antibiotics used include isoniazid (INH), rifampicin (RIF), 

ethambutol (EMB), streptomycin (SM) and pyrazinamide (PZA) (Bapela et al., 2006; 

http://www.doh.gov.za/docs/policy/2011/policy_TB.pdf
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Johnson et al., 2006). Isoniazid is a very efficient mycobactericidal drug, and is 

capable of significantly reducing the transmission of tuberculosis, while rifampicin, 

plays an important role in the prevention of TB re-activation, as it is capable of killing 

off metabolically active M. tuberculosis cells (Suresh et al., 2006 and Sharma and 

Mohan, 2004). Resistance to either isoniazid or rifampicin can be managed by using 

other first-line antibiotics; but with the emergence of multi-drug resistance, treatment 

protocols have been further complicated as second-line drugs are now required.  

 

Table 1.1:  Treatment guidelines of MDR-TB and XDR-TB (Dept. of Health, S.A; Streicher et al., 2012). 

 

Unfortunately, second-line antibiotics have many limitations making them unsuitable 

for short treatment programmes. MDR-resistant patients require prolonged treatments 

with antimicrobial drugs that are less effective, more expensive, slightly more toxic, 

and have the possibility of leading to undesirable drug interactions, as some 

antiretrovirals and anti-TB drugs cannot be used simultaneously (Matsumoto et al., 

2006 and Sharma and Mohan, 2004).  

 

However, for the first time in 40 years, a large number of pharmaceutical companies 

have focussed on drug discovery to develop new chemical entities using either target 

based or phenotypic screens (Villemagne et al., 2012). There are at least ten 

compounds in clinical trials, four of which are existing drugs that are being re-

developed or re-purposed for TB treatment and then there are six new compounds 

that are being developed for TB treatment. It is unfortunate that majority of these drugs 

MDR-TB XDR-TB 

Intensive Phase Continuation Phase Intensive Phase Continuation Phase 

Kanamycin (IM)  Capreomycin (IM)  

Ethionamide Ethionamide Ethionamide Ethioamide 

Pyrazinamide Pyrazinamide   

  ρ-aminosalicyclc acid ρ-aminosalicyclic acid 

Ofloxacin Ofloxacin Moxifloxacin Moxifloxacin 

Terizidone or cycloserine Terizidone or cycloserine Terizidone or cycloserine Terizidone or cycloserine 
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are still present in preclinical testing (Villemagne et al., 2012 and Zhenkun, 2010). 

Currently there are three drugs which have great promise for the release for public use 

as they are proving to be very effective in phase 3 trials, namely Bedaquiline, 

Delaminid and PaMZ. Bedaquiline and Delaminid, have shown to be effective at 

shortening the duration of treatment against MDR-TB where PaMZ, a combination 

therapy using a novel drug moxifloxacin and pyrazinamide, has shown effectiveness 

against TB, with 99% of TB bacteria killed within two weeks as well as some forms of 

drug-resistant TB (http://blogs.sun.ac.za/news/2012/07/25/new-tb-drugs-bring-hope-in-

fight-against-tb/). 

 

1.3 HUMAN IMMUNODEFICIENCY VIRUS (HIV) 

1.3.1 Epidemiology and Pathogenesis 

Human immunodeficiency virus (HIV) is a lentivirus that causes acquired 

immunodeficiency syndrome (AIDS), a condition in humans resulting in the 

progressive failure of the immune system. Infection with HIV occurs by the transfer of 

blood, semen, vaginal fluid, pre-ejaculate or breast milk. Within these body fluids, HIV 

is present as both free virus particles and virus within infected immune cells. This 

infection is regarded as a communicable disease where sexual transmission is the 

most common mode of HIV transmission (UNAIDS Report on the Global Aids 

Epidemic, 2010). The rate of new infection worldwide is estimated at 2.7 million per 

year (UNAIDS, 2010). 

 

HIV infects vital cells in the human immune system such as helper T cells (specifically 

CD4+ T cells), macrophages and dendritic cells. When CD4+ T cell numbers decline 

below a critical level, cell mediated immunity is lost and the body becomes 

progressively more susceptible to opportunistic infections (Cunningham et al., 2010). 

 

1.3.2 Treatment Regimes 

Treatment for HIV ranges from the use of nucleoside reverse transcriptase inhibitors 

(NRTI’s), highly active antiretroviral therapy or otherwise known as HAART, which 

introduced protease inhibitors and then the non-nucleoside reverse transcriptase 

inhibitors (NNRTI’s) (Karim and Karim, 2010). HAART provides combinations 

consisting of at least three drugs belonging to at least two types of antiretroviral 

agents. Typically, these are two nucleoside analogue reverse transcriptase inhibitors 

http://blogs.sun.ac.za/news/2012/07/25/new-tb-drugs-bring-hope-in-fight-against-tb/
http://blogs.sun.ac.za/news/2012/07/25/new-tb-drugs-bring-hope-in-fight-against-tb/
http://en.wikipedia.org/wiki/Lentivirus
http://en.wikipedia.org/wiki/AIDS
http://en.wikipedia.org/wiki/AIDS
http://en.wikipedia.org/wiki/Immune_system
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Semen
http://en.wikipedia.org/wiki/Vaginal_lubrication
http://en.wikipedia.org/wiki/Pre-ejaculate
http://en.wikipedia.org/wiki/Breast_milk
http://en.wikipedia.org/wiki/White_blood_cell
http://en.wikipedia.org/wiki/Helper_T_cell
http://en.wikipedia.org/wiki/CD4
http://en.wikipedia.org/wiki/Macrophage
http://en.wikipedia.org/wiki/Dendritic_cell
http://en.wikipedia.org/wiki/Cell-mediated_immunity
http://en.wikipedia.org/wiki/Antiretroviral_drug
http://en.wikipedia.org/wiki/Antiretroviral
http://en.wikipedia.org/wiki/Nucleoside_analogue_reverse_transcriptase_inhibitor
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(NARTIs or NRTIs) and either a protease inhibitor or a non-nucleoside reverse 

transcriptase inhibitor (NNRTI) (NYU Medical Centre, 2009). The NRTI’s, such as 

Zidovudine, Lamivudine and Emtricitabine, are analogues of the nucleosides required 

for DNA synthesis. They differ in that they lack the 3’-hydroxyl group of the ribose ring 

and when they become phosphorylated they can be incorporated into the growing 

DNA strand, however once this occurs, DNA synthesis halts due to the absence of the 

3’ hydroxyl group (Karim and Karim, 2010).   

 

NNRTI’s, such as Nevirapine and Efavirenz, do not undergo chemical modification in 

order to become active and the different members in this group have diverse chemical 

structures. They are relatively small and act by binding non-competitively to the active 

receptor site of the reverse transcriptase enzyme. This causes a change in the three 

dimensional structure of the enzyme and thus impairment of the polymerase activity 

(Karim and Karim, 2010). 

 

Protease inhibitors (PI’s), such as Ritonavir, Indinavir and Amprenavir, are also 

structurally diverse molecules which require no chemical modification in order to 

become active. They are metabolized in the liver and the gut by the P450 enzyme 

system, which results in multiple interactions with other hepatically metabolized drugs 

(Karim and Karim, 2010). These drugs target the HIV encoded protease enzyme, 

which is responsible for cleaving the HIV protein precursor transcript into its subunits 

prior to the virion assembly and the export of the new virus from the infected cell. They 

bind to the central, active cleavage site of the HIV protease heterodimer (Karim and 

Karim, 2010).  

 

There is currently no available vaccine or cure for HIV or AIDS, however a number of 

trials have been conducted using two different vaccines in sequence or in 

combination, now being referred to as the prime boost strategy, including many trials 

combining a DNA plasmid with a viral vector, based on either poxvirus or adenovirus, 

combining DNA plasmid with protein, or combining a protein vaccine with a viral vector 

(Fast and Kaleebu, 2010). In general, the prime boost trials have shown a synergistic 

effect of the two components. RV144, the most recent efficacy trial in Thailand showed 

30% reduced incidence of infection in the group that received a prime boost vaccine 

(Veronin and Phogat, 2010 and Fast and Kaleebu, 2010). A vaginal gel containing 

http://en.wikipedia.org/wiki/Protease_inhibitor_%28pharmacology%29
http://en.wikipedia.org/wiki/Non-nucleoside_reverse_transcriptase_inhibitor
http://en.wikipedia.org/wiki/Non-nucleoside_reverse_transcriptase_inhibitor
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tenofovir, a reverse transcriptase inhibitor, was shown to reduce HIV infection rates by 

39% in a trial conducted in South Africa (Karim and Karim, 2010). 

 

1.4 IN VITRO BIOASSAYS FOR EVALUATION OF PLANT EXTRACTS 

 

1.4.1 Inhibition of M. tuberculosis  

1.4.1.1 Microplate Alamar Blue Assay (MABA) 

Microbroth dilution susceptibility tests in 96-well microplates offers the advantages of 

small sample requirements, low cost and high-throughput including the potential for 

automation (Pauli et al., 2005). Microplate Alamar Blue assay (MABA), a colorimetric 

drug-susceptibility testing method uses an oxidation/reduction indicator dye, alamar 

blue that changes colour from blue to pink to indicate bacterial growth and can be read 

visually without the need for instrumentation (Collins and Franzblau, 1997). The 

reduced form of the dye can also be quantitated colorimetrically by measuring 

absorbance at 570 nm (and subtracting absorbance at 600 nm; the peak for the 

oxidised form), or fluorimetrically by exciting at 530 nm and detecting emission at 590 

nm (Collins and Franzblau, 1997).  

 

MABA has been used previously for drug-susceptibility testing of M. tuberculosis 

against antituberculosis drugs and has also been used for screening other 

antimicrobial agents against M. avium and M. tuberculosis (Collins and Franzblau, 

1997; Franzblau et al., 1998; Bastian et al., 2001). Multiple drug, extract or compound 

concentrations can be tested using MABA (Gautam et al., 2007; Ananthan et al., 

2009; Lougheed et al., 2009; Green et al., 2010). 

 

1.4.1.2 p-Iodonitrotetrazolium chloride (INT) Assay 

This assay is a microplate assay, which is very similar to that of MABA, however it 

determines the MIC of plant extracts using p-Iodonitrotetrazolium chloride (INT) dye. 

The tetrazolium dye (INT) acts as an electron acceptor and is reduced to a coloured 

product by biologically active organisms. Viable bacteria reduce the yellow dye to a 

purple/pink colour and the MIC is defined as the lowest sample concentration that 

prevents change in colour and exhibits complete inhibition of bacterial growth. When 

larger volume tube assays were used on plant extract testing, precipitation of insoluble 

components and the green colour of the extracts made it difficult, if not impossible to 

http://en.wikipedia.org/wiki/Tenofovir
http://en.wikipedia.org/wiki/Reverse_transcriptase_inhibitor
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determine the MIC which explains why it is not often used for screening plant extracts 

(Eloff, 1998).  

 

This assay has been used for detection of antimicrobial activity using control bacteria 

such as Bacillus subtilis, Staphylococcus aureus, Streptococcus spp, Escherichia coli 

and Pseudomonas aeruginosa (Eloff, 1998; Smith and McFeters, 1997; Kuete et al., 

2008) but not for M. tuberculosis. 

 

1.4.1.3 Flow Cytometry 

Flow cytometry has been used for the detection of M. tuberculosis that are resistant or 

susceptible to antimicrobial agents (Kirk et al., 1998; DeCoster et al., 2005; Pina-Vaz 

et al., 2005; Fredricks et al., 2006). The main advantage of flow cytometry is the 

shorter time required to obtain a result (Fredricks et al., 2006; Kirk et al., 1998). 

Fluorescent dyes such as fluorescein diacetate (FDA) (Norden et al., 1995; Kirk et al., 

1998; Reis et al., 2004) or SYTO16 (Pina-Vaz et al., 2005; Govender et al., 2010) 

have been used for detection of resistance in M. tuberculosis isolates. 

 

The method is based on the ability of mycobacteria to hydrolyse fluorescein diacetate 

to free fluorescein via non-specific cellular esterases. Accumulation of fluorescein in 

metabolically active mycobacterial cells can then be easily detected by using a flow 

cytometer. By contrast, mycobacteria that are killed or inhibited by antimycobacterial 

agents hydrolyse significantly less FDA and therefore have reduced levels of 

fluorescence (Kirk et al., 1998). Safety is a primary concern when working with M. 

tuberculosis and has been improved by procedures such as exposure to 10% 

formaldehyde for one hour that kills the mycobacteria prior to flow cytometry testing 

without compromising their staining characteristics (Norden et al., 1995; Moore et al., 

1999). 

 

Flow cytometry with the fluorescent nucleic acid stain SYTO16 can also be applied to 

screening of anti-tuberculosis agents against M. tuberculosis (Pina-Vaz et al., 2005). 

M. tuberculosis cells are grown in the absence or presence of antimycobacterial drugs 

and heat-killed, stained with SYTO16 and then analysed by flow cytometry. An isolate 

was considered sensitive whenever the number of fluorescent particles in the drug-

containing medium was reduced in comparison to the untreated growth control (Pina-
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Vaz et al., 2005). Although the use of heat killed cells stained with SYTO16 ensures 

biosafety, the small size of M. tuberculosis and their tendency to aggregate makes 

analysis fairly challenging (Fredricks et al., 2006; Akselband et al., 2005; Pina-Vaz et 

al., 2005; Kirk et al., 1998 and Ryan et al., 1995). However, a disadvantage 

associated with the use of this stain, is the relatively high cost (R6 000 for 250 µL), 

which could be problematic if large numbers of anti-tuberculosis drugs need to be 

screened (Govender et al., 2010). 

 

1.4.2 Screening for Activity against HIV 

1.4.2.1 Reverse transcriptase inhibition 

Bioassays to determine anti-HIV activity involve screening for presence of HIV-specific 

enzyme inhibitors. The Reverse Transcriptase (RT) assay is a colorimetric enzyme 

immunoassay for the quantitative determination of retroviral reverse trancriptase 

activity by incorporation of digoxigenin and biotin labelled dUTP into DNA 

(www.cssportal.roche.com/LFR_PublicDocs/ras/11468120910_en_13.pdf). 

The detection and quantification of the synthesized DNA as a parameter for RT activity 

follows a sandwich ELISA protocol, where the biotin labelled DNA binds to the surface 

of streptavidin coated microplate components. An antibody to dig-oxigenin, conjugated 

to peroxidase (anti-DIG-POD), is then added and binds to the dig-oxigenin labelled 

nucleotides. A peroxidase substrate is then added so that the peroxidase enzyme can 

catalyze the cleavage of the substrate to produce a coloured reaction product. The 

absorbance of the samples is determined using a microplate reader and is directly 

correlated to the level of RT activity in the sample 

(www.cssportal.roche.com/LFR_PublicDocs/ras/11468120910_en_13.pdf). 

 

 

Figure 1.1: Principle of Reverse Transcriptase Assay 

(www.cssportal.roche.com/LFR_PublicDocs/ras/11468120910_en_13.pdf). 

http://www.cssportal.roche.com/LFR_PublicDocs/ras/11468120910_en_13.pdf
http://www.cssportal.roche.com/LFR_PublicDocs/ras/11468120910_en_13.pdf
http://www.cssportal.roche.com/LFR_PublicDocs/ras/11468120910_en_13.pdf


10 

1.4.2.2 HIV-integrase inhibition 

The HIV-1 integrase assay was developed for the screening of HIV-1 integrase 

inhibitors using a colorimetric enzyme immunoassay. This assay can be used to 

quantitatively measure the inhibition of HIV-1 strand transfer activity due to the 

presence of interacting agents (www.xpressbio.com/ebi/pdf/EZ-

1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf). Integrase catalyses two 

sequential, spatially distinct and metal-dependant reactions, namely 3’-end processing 

and strand transfer. Although inhibitors of both steps have been identified, only agents 

that inhibit the strand transfer reaction have been shown to be biologically active in 

cell based assays and in vivo (www.xpressbio.com/ebi/pdf/EZ-

1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf).  

 

This assay functions by detecting the absence of strand transfer and thus if an 

inhibitor is not present, the HIV-1 integrase incorporates the target DNA into donor 

DNA and the products of the reaction can be determined through a colorimetric 

reaction. If a strand transfer inhibitor is present, this will reduce product formation and 

this inhibitory activity of the test agent can then be determined quantitatively 

(www.xpressbio.com/ebi/pdf/EZ-

1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf). Drugs which are 

inhibitory to integrase would therefore be valuable in antiviral therapy (Craigie, 2001). 

 

1.4.2.3 HIV-1 protease inhibition 

The HIV-1 protease assay was developed for the screening of HIV-1 protease 

inhibitors. This fluorescence resonance energy transfer (FRET) based assay could 

also be used for quantification of HIV-1 protease. The Human immunodeficiency virus 

type 1 (HIV-1) precursor poly-protein is generated during the virion maturation 

process. HIV-1 protease is responsible for cleaving up to 12 sites in the group specific 

antigen (Gag) and Gag-Pol precursor polypeptides (Klos et al., 2009). The order of 

cleavage and the extent of precursor processing appear to be critical steps in the 

generation of fully infectious, appropriately assembled viral particles. Therefore, 

inhibition of HIV-1 protease represents an important aspect for antiviral therapy (Klos 

et al., 2009). 

 

http://www.xpressbio.com/ebi/pdf/EZ-1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf
http://www.xpressbio.com/ebi/pdf/EZ-1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf
http://www.xpressbio.com/ebi/pdf/EZ-1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf
http://www.xpressbio.com/ebi/pdf/EZ-1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf
http://www.xpressbio.com/ebi/pdf/EZ-1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf
http://www.xpressbio.com/ebi/pdf/EZ-1700hiv_integrase_wildtype_kit%20v%203.0_pi_061411.pdf
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Fluorescence resonance energy transfer (FRET) assays have become a popular and 

effective means for drug screening. The assay functions by utilizing a FRET peptide, 

where the sequence is derived from the native p17/p24 cleavage site on Pr-gag for 

HIV-1 protease. In the FRET peptide, the green fluorescence is quenched by an 

appropriate fluorescence quencher until this peptide is cleaved into two separate 

fragments by HIV-1 protease at the cleavage site. Upon cleavage, the green 

fluorescence is recovered and can be monitored at excitation/emission of 490 nm/530 

nm (Roche, Germany). 

 

Although the FRET assay has proven to be very effective, a novel method for HIV-1 

protease detection was recently published by Esseghaier et al., 2012. They designed 

a very simple and inexpensive sensing surface for impedimetric HIV-1 protease 

detection. The principle of the method is based on the utilization of a probe consisting 

of a specific HIV-1 protease substrate peptide which has a magnetic bead attached to 

its N-terminus. This probe is then attached onto a gold sensor surface at the C-

terminus of the same peptide, resulting in a layer of magnetic beads close to the 

sensor surface. Upon cleavage of the probe peptide by the HIV-1 protease, the 

physical link between the magnetic beads and the sensor surface is broken. An 

externally applied magnetic field accelerates the dissociation of the magnetic beads 

from the sensor surface, resulting in a significant shift of the electrochemical signal 

due to the protease induced release of the magnetic beads from the sensor. This 

system showed very high specificity and sensitivity, capable of detecting HIV-1 

protease at a concentration of 10 pg/mL in 25 min. The sensor was also capable of 

detecting the inhibitory activities of the anti-HIV drug Saquinavir mesylate with great 

accuracy, providing a novel approach to high throughput drug screening (Esseghaier 

et al., 2012). 

 

1.4.3 Cytotoxicity Assay (MTT Assay) and Synergistic effects 

1.4.3.1 Cytotoxicity  

The MTT assay is a colorimetric assay where the reduction of 3-(4,5-dimethythiazol-2-

yl)-2,5-diphenyl tetrazolium bromide (MTT), which is a yellow colour, by succinate 

dehydrogenase is measured (Wilson, 2000; Cory et al., 1991). MTT is reduced to an 

insoluble, dark purple, formazan product and this will only occur if the cells are viable. 

The total amount of formazan product is measured spectrophotometrically once the 
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formazan product has been dissolved in a suitable organic solvent such as 

isopropanol. MTT is reduced by metabolically active cells after exposure to a particular 

toxin or treatment (Wilson, 2000; Cory et al., 1991). A main application allows one to 

assess the viability and the proliferation of cells. It can be used to determine 

cytotoxicity of potential medicinal agents and toxic materials, since those agents would 

either stimulate or inhibit cell viability and growth. When the amount of the purple 

formazan produced by cells that have been exposed to a treatment is compared with 

the amount of formazan produced by the untreated control cells, the effectiveness of 

that treatment in causing death or changing the metabolism of the cells can be 

deduced through the production of a dose response curve (Wilson, 2000; Cory et al., 

1991). 

 

1.4.3.2 Synergistic effects 

Treating bacterial infections with antibiotics is beneficial but their mis-use has led to an 

increase in resistance among microorganisms as well as to the re-emergence of old 

infectious diseases (Chanda and Rakholiya, 2011). One approach to treat infectious 

diseases is the use of plant extracts individually and, as an alternative approach, using 

them in combination with antibiotics. This latter approach is referred to as combination 

or synergistic therapy, and applying this new found approach against resistant 

microorganisms may lead to novel ways of treating infectious diseases and is found to 

be even more effective for patients with serious infections caused by drug resistant 

pathogens, such as TB and HIV (Chanda and Rakholiya, 2011). These synergistic 

effects may be due to certain complex formation which becomes more effective in the 

inhibition of a particular species of microorganisms either by inhibiting the cell wall 

synthesis or by causing its lysis or death (Chanda and Rakholiya, 2011). 

 

1.5 PLANT MEDICINES FOR TREATMENT OF TB AND HIV 

 

1.5.1 Annona muricata L. 

Annona muricata L. (Annonaceae), commonly known as soursop, is found from 

Central America to South America, including the North, Northeast and Southeast 

regions of Brazil and Central Africa. It is a small, tropical evergreen tree, 5–6 m high, 

with large dark green leaves. It produces a large edible fruit which is yellow/green in 

colour. Traditionally, the leaves are used for headaches, insomnia, cystitis, liver 
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problems, diabetes, hypertension and as an anti-inflammatory, anti-spasmodic and 

anti-dysenteric (de Sousa et al., 2010). 

  

The extracts of the leaves have parasiticide, anti-rheumatic and anti-neuralgic effects 

when used internally, while the cooked leaves, applied topically, fight rheumatism and 

abscesses (de Sousa et al., 2010). A. muricata has also been investigated for 

accessory substances present in the acetogenins, which is a unique class of 

secondary metabolites that have been isolated from different parts of the plant. Many 

of these acetogenins have been found in the leaves such as annomuricins A and B 

(de Sousa et al., 2010; Aminimoghodamfarouj et al., 2011). These acetogenins have 

cytotoxic properties against tumour cell lines, molluscicidal activity, anti-parasitic, 

insecticidal, immunosuppressive effects and anti-oxidant properties and is regarded as 

a likely source for the development of potential drugs (de souse et al., 2010; 

Aminimoghodamfarouj et al., 2011).  

 

Annonacin is found in the fruits of A. muricata. Along with other acetogenins, 

annonacin is reported to block mitochondrial complex I (NADH dehydrogenase), which 

is responsible for the conversion of NADH–NAD+ and the build up of a proton gradient 

over the mitochondrial inner membrane. This effectively disables a cell’s ability to 

generate ATP via an oxidative pathway, ultimately forcing a cell into apoptosis or 

necrosis (Aminimoghodamfarouj et al., 2011). 

 

1.5.2 Artemisia afra 

Artemisia afra (Asteraceae) is one of the most popular and commonly used herbal 

medicines in South Africa. Artemisia afra is a perennial woody shrub, which grows up 

to 2 m tall with a leafy, hairy and ridged stem and is very aromatic (Liu et al., 2009). In 

the English language, it is referred to as African wormwood and is usually employed 

for treating various ailments such as coughs, colds, headaches, chills, dyspepsia, loss 

of appetite, gastric derangements, colic, croup, whooping cough, gout, asthma, 

malaria, diabetes, bladder and kidney disorders, influenza, convulsions, fever, heart 

inflammation, rheumatism and is also used as a purgative (Liu et al., 2009 and van 

Wyk, 2008). These uses indicate that A. afra possesses antiviral, antibacterial and 

anti-inflammatory activities. Respiratory infections specifically, are treated through 

inhaling the vapour from boiling leaves. 
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It is widely distributed in southern Africa, such as South Africa, Namibia and 

Zimbabwe. In South Africa, it grows in the northern provinces of Gauteng and Limpopo 

along the eastern parts of South Africa, including Swaziland and Lesotho, to the 

Western Cape in the south (Liu et al., 2009). A. afra is rich in terpenes and is therefore 

likely to have valuable biological activities. From past studies it can be noted that this 

plant has a broad spectrum of inhibitory activity against the organisms such as 

Bacillus, Micrococcus, Streptococcus, Staphylococcus, Acinetobacter, Erwinia, 

Enterobacter, Escherichia coli, Proteus, Pseudomonas, Salmonella, Shigella and 

Yersinia (Liu et al., 2009).  

 

1.5.3 Plants as sources of anti-tuberculosis and anti-HIV agents 

Presently used drug regimens to combat TB infections comprise a combination of 

drugs administered over a period of several months, however patients frequently do 

not complete treatment when the symptoms begin to lessen and thus therapies that 

act faster may enhance patient compliance. In addition, lead structures, with novel or 

more effective mechanisms of action are required urgently to overcome the problems 

of drug resistance (McGaw et al., 2008). Natural products continue to play a role in the 

drug discovery and development process and plants are becoming increasingly 

recognised as a useful source of highly active antimycobacterial metabolites (Pauli et 

al., 2005; Gautam et al., 2007). Many South African plants have ethnobotanical uses 

for the treatment of tuberculosis and its related symptoms such as coughing, 

respiratory ailments and fever.  

 

The only treatment with proven efficacy for HIV is lifelong with the use of antiretroviral 

drugs (ARVs) (Palella et al., 1998; Lamorde et al., 2010). In South Africa it is evident 

that majority of the ARV treatment sites are located in towns and urban centres 

whereas access to treatment in rural areas remains incredibly low and thus access 

and continuation of treatment is difficult. Thus investigations on the biological activity 

of plant extracts against the crucial steps in the establishment of infection with regards 

to HIV Reverse Transcriptase and Integrase would widen the scope of the search for 

plant based anti-HIV molecules. 

 

With the great diversity of plants in South Africa, screening of extracts of these plants 

for antimycobacterial and anti-HIV efficacy has much to offer in the search for novel 
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active metabolites that may be effective against M. tuberculosis and HIV (McGaw and 

Eloff, 2008; McGaw et al., 2008). It is now even more important to further research A. 

afra, as it was recently found by Lubbe et al. (2012) to possess anti-HIV activity at the 

same level as that of its closely related, artemisinin producing relative, Artemisia 

annua. Lubbe et al. (2012) used A. afra as a tea infusion through a method using 

genetically modified HeLa cell lines, which were then infected with HIV. Therefore, 

further determining which enzymes are affected by the plant extract as well as which 

compounds are responsible for this activity would be highly useful in the search for 

novel anti-HIV therapies. 

 

It has been documented that Oleanolic acid (OA), which is a triterpenoid compound 

that exists widely in the human diet, medicinal herbs and various other plants, has 

potent antimycobacterial properties against drug sensitive and drug resistant M. 

tuberculosis and that it has favourable synergistic activity with the first line drugs INH, 

RIF and EMB (Ge et al., 2010). Recently, it has been shown that OA can be modified 

at the C-3 position to form cinnamate based esters which yields high antimycobacterial 

activity. This ability to modify OA may allow the creation of new compounds with more 

effective derivatives and less toxicity (Ge et al., 2010). It might be beneficial to 

determine if A. afra and A. muricata possess OA.   

 

1.6 POTENTIAL PLANT-DRUG INTERACTIONS 

1.6.1 Interactions between plant medicines and drug metabolising pathways 

Drug interactions are caused by four major mechanisms namely, altered drug 

absorption, altered renal elimination, additive effects or toxicities and altered hepatic 

metabolism of drugs (Patel et al., 2011). Drugs are generally absorbed from the 

intestine and can be eliminated too quickly if herbal laxatives are taken. The most 

important pathway for drug metabolism is the family of liver enzymes known as the 

cytochrome P450 group, of which CYP3A4 is the most commonly known and is 

responsible for the metabolism of many drugs, including antiretrovirals (ARVs) (Zhou 

et al., 2007; Patel et al., 2011). The activity of these enzymes may be induced or 

inhibited by the use of traditional medicines. The second most important drug 

interaction in HIV patients on ARVs is altered efflux mechanisms, such as P-

glycoprotein, which is responsible for transporting a range of compounds, including 

protease inhibitors, out of the intestinal epithelial cells and back into the intestinal 
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lumen (Brown et al., 2008; Balayssac et al., 2005; Patel et al., 2011). Hypoxis 

hemerocallidea, commonly used in Southern Africa to boost immunity in HIV patients, 

interacts with the efflux mechanism of nevirapine across intestinal epithelial cells, 

which can result in an increase in the bioavailability of this drug, thus an increase in 

drug toxicity, drug resistance and side effects (Mills et al., 2005; Brown et al., 2008; 

Patel et al., 2011). 

 

It is estimated that more than 80% of the Southern African population makes use of 

traditional medicines, often in combination with prescription drugs (Maduna, 2006). 

Components of medicinal plants can alter the absorption and metabolism of 

conventional drugs leading to the reduced efficacy of the specific drug or systemic 

drug toxicity (Meijerman et al., 2006; Zhou et al., 2007 and Willet et al., 2004). 

 

Traditional remedies are usually complex mixtures of different molecules that are able 

to interact with various drug metabolising pathways, such as the inhibition or 

transcriptional activation of drug metabolising enzymes (Pal and Mitra, 2006). A 

common drug metabolic pathway involves the oxidation of the parent molecule, 

referred to as phase I metabolism, which will then be followed by conjugation of the 

oxidised group  with polar molecules such as glucose, sulphate or glutathione and this 

is referred to as phase II metabolism (Pal and Mitra, 2006).  

 

The major enzymes involved in human phase I metabolism are the different isoforms 

of cytochrome P450, namely CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and 

CYP3A4 (Zhou et al., 2007; Crespi and Stresser, 2000). The latter isoform is the most 

abundant CYP isozyme and is believed to metabolise between 50 and 70% of the 

currently marketed drugs including HIV protease inhibitors, non-nucleoside reverse 

transcriptase inhibitors, macrolide antibiotics and azole antifungals (Pal and Mitra, 

2006). The key phase II enzymes include UDP-dependant glucuronosyl transferase, 

sulfotransferase and glutathione-S-transferase (Meijerman et al., 2006; Triplitt, 2006; 

Mouly et al., 2006).  

 

Since HIV protease inhibitors, macrolide antibiotics and azole are recognised 

substrates or inducers of these drug metabolising proteins, it is clear that plant 

components can adversely affect the course of tuberculosis and HIV treatment (Zhou 
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et al., 2007; Venkataramanan et al., 2006). If plant remedies are used in combination 

with conventional drugs, knowledge on the possible interactions that may occur will 

enable physicians to suggest safe drug regimens, dose adjustment or discontinuation 

of therapy if toxic drug-plant interactions could occur (Zhou et al., 2007; 

Venkataramanan et al., 2006). 

 

Therefore methods employed for the in vitro antimycobacterial and anti-HIV screening 

of natural compounds/ products (plant medicines) are important for validating the 

traditional use of herbal treatments. 

 

1.6.2 Assays to investigate drug metabolising pathways 

CYP450 screening kits are designed to assess the metabolism and inhibition of the 

major human P450 isozymes involved in hepatic drug metabolism, namely CYP1A2, 

CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5. The kit will 

employ CYP450 substrates and CYP450 baculosomes reagents. The CYP450 

baculosomes reagents are microsomes prepared from insect cells expressing a 

human P450 isozyme and rabbit NADPH-P450 reductase 

(www.tools.invitrogen.com/downloads/O-13873-r1_US_0405.pdf).  

 

CYP450 baculosomes reagents offer a distinct advantage over human liver 

microsomes in that only one CYP450 enzyme is expressed, thereby preventing 

metabolism by other CYP450s. The substrates are metabolized by a specific CYP450 

enzyme into products that are highly fluorescent in aqueous solutions. The fluorescent 

metabolites are excited in the visible light spectrum, which minimizes interference 

caused by the background fluorescence of UV excitable compounds and NADPH. Due 

to the functioning of the kit and the specific substrates that are used, even weak 

CYP450 inhibitors will be determined (www.tools.invitrogen.com/downloads/O-13873-

r1_US_0405.pdf). 

 

There are multiple drugs that can be utilized to help reduce the symptoms of 

HIV/AIDS. Such drugs include tenofovir, emtracitbine, efavirenz, nevirapine, 

zidovudine, lamivudine, lopinavir and ritonavir for the treatment of HIV/AIDS. Drugs 

utilized for TB include ofloxacin, streptomycin, ethambutol, rifampicin and isoniazid, all 

http://www.tools.invitrogen.com/downloads/O-13873-r1_US_0405.pdf
http://www.tools.invitrogen.com/downloads/O-13873-r1_US_0405.pdf
http://www.tools.invitrogen.com/downloads/O-13873-r1_US_0405.pdf
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of which are utilized in primary healthcare in South Africa. Of these drugs only a few 

have an effect on the CYP450 isozymes. These drugs include  efavirenz, which is 

metabolized mostly by CYP3A4 and CYP2B6 but also inhibits CYP2C9 and 

CYP2C19; nevirapine, which is oxidatively metabolised by CYP3A4 and CYP2B6; 

lopinavir, which also undergoes oxidative metabolism by  the CYP3A4 isozyme; 

ritonavir, which is metabolized by CYP3A4 and CYP2D6, however this may not be a 

good choice of drug as it both induces and inhibits the expression of CYP3A4; 

isoniazid, which inhibits CYP1A2, CYP2C9, CYP2C19 and CYP3A4 and rifampicin, 

which induces the isozyme CYP2C8 (Levien et al., 2003). 

 

Glutathione-S-transferases are thought to play a role in initiating the detoxification of 

potential alkylating agents including pharmacologically active compounds. These 

enzymes catalyze the reaction of such compounds with the -SH group of glutathione, 

thereby neutralizing their electrophilic sites and rendering the products more water 

soluble (Habig et al., 1974). Glutathione conjugates are thought to be metabolized 

further by cleavage of the glutamate and glycine residues, followed by acetylation of 

the resultant free amino group of the cysteinyl residue, to produce the final product, a 

mercapturic acid. The mercapturic acids are then excreted (Habig et al., 1974). A 

widely used method for determining GST activity in living cells is by utilizing 1-Chloro-

2,4-dinitrobenzene (CDNB) which is suitable for the broadest range of GST isozymes.  

Addition of CDNB to the cell culture medium and conjugation of the thiol group of 

glutathione to the CDNB substrate, results in an increase in the absorbance at 340 nm 

(www.sigmaaldrich.com/etc/medialib/docs/Sigma/Bulletin/cs0410bul.Par.0001.File.tmp

/cs0410bul.pdf).  

 

 

 

 

 

 

 

 

 

 

http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Bulletin/cs0410bul.Par.0001.File.tmp/cs0410bul.pdf
http://www.sigmaaldrich.com/etc/medialib/docs/Sigma/Bulletin/cs0410bul.Par.0001.File.tmp/cs0410bul.pdf
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1.7 SCOPE AND OBJECTIVES 

Current drug regimens to combat TB and HIV infections comprise multiple drugs 

administered over several months, hence patients frequently do not complete the 

treatment. New antimycobacterial and anti-HIV therapies that act faster may enhance 

patient compliance.  

 

Many plant species are used in traditional South African medicine to alleviate 

symptoms of TB and HIV and several lead compounds have been reported for further 

research following in vitro antimycobacterial and antiretroviral activity evaluation (Klos 

et al., 2009). A. muricata and A. afra are two plants which were investigated for 

inhibitory activity against M. tuberculosis and HIV. A. afra is one of the most popular 

and commonly used herbal medicines in southern Africa to treat diseases such as 

herpes simplex virus, asthma and several others. Despite its popularity, A. afra has 

been poorly researched and thus has limited ethnopharmalogical support (Liu et al., 

2009 and Lubbe et al., 2012).  

 

There are few reports on A. muricata, which indicate that all parts of the tree have 

been used to treat multiple disorders (Boyom et al., 2011). The leaves are especially 

used as an antispasmodic, sedative, also for coughs, grippe, asthma, catarrh and 

asthenia (Asprey and Thornton, 1955). As both plants have been shown to be used 

traditionally against chest infections, respiratory ailments and other viruses, it was 

relevant to determine if any activity was present against the two major diseases in 

South Africa namely TB and HIV. 

 

1.7.1 Hypotheses to be tested 

It was hypothesised that A. muricata and A. afra may have an inhibitory effect on M. 

tuberculosis and the Human Immunodeficiency Virus. 

 

It was further hypothesized that possible drug interactions may occur with plant 

extracts and drugs used for treatment of TB and HIV which may interfere with drug 

metabolizing pathways involving the CYP3A4 isozyme and Glutathione-S-

Transferases. 
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1.7.2 Objectives 

The following objectives were established to test the above hypothesis: 

 To screen two plant extracts (A. muricata and A. afra) for in vitro inhibitory activities 

against M. tuberculosis and Human Immunodeficiency Virus enzymes  

 To determine cytotoxicity and possible synergistic effects of plant extracts, and 

 To investigate drug interactions with plant extracts and drugs used for M. 

tuberculosis and HIV treatment. 
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CHAPTER TWO 

 

MATERIALS AND METHODS 

 

2.1. BACTERIAL STRAINS, GROWTH CONDITIONS AND MEDIA 

M. tuberculosis H37Rv ATCC 27294 was used as a control culture for all assays as it 

has a drug susceptibility profile fairly representative of most drug susceptible clinical 

isolates. M. tuberculosis was grown in Middlebrooks 7H9 broth [88.95 mL ddH2O; 

0.470 g BD DifcoTM Middlebrooks 7H9 broth base; 0.8 mL glycerol (Merck); 0.005 mL 

Tween® 80 (Sigma-Aldrich), 1 mL Middlebrook Albumin-dextrose-catalase (ADC) 

growth supplement (Sigma-Aldrich) added after autoclaving]. Cultures were  incubated 

at 37oC for 10 days after which the turbidity of the culture was assessed and adjusted 

to a McFarland 0.5 standard (1.5 x 108 cells/mL) [1.175% BaCl2 (0.1175 g in 10 mL 

ddH2O) and 1% H2SO4 (0.5 mL H2SO4 in 50 mL ddH2O)]. 

 

2.2 CONTROL DRUGS: M. TUBERCULOSIS 

The following antibiotics (Sigma-Aldrich) that are currently used for treatment of M. 

tuberculosis infections were tested and used as positive controls for optimization of all 

bioassays: ofloxacin (OFX), isoniazid (INH), rifampicin (RIF), streptomycin (ST) and 

ethambutol (EMB). All drugs were solubilized according to the manufacturer’s 

instructions either in dimethyl sulfoxide (DMSO) (Merck), distilled water or 0.1 N NaOH 

(1 g NaOH in 250 mL ddH2O) and stock solutions (1 mg/mL) were filter sterilized (0.2 

µm filter) and stored in 1 mL aliquots at -20oC until required. 

 

2.3 PREPARATION OF PLANT EXTRACTS 

Annona muricata L. was air dried for two days followed by drying in a hot air oven at 

40°C, then ground into powder and stored. One hundred grams of powdered plant 

material was macerated with 80% ethanol at room temperature. The extract was then 

filtered and concentrated to dryness in vacuo at room temperature (Sowemimo et al., 

2009). 

 

Fresh leaves of the Artemisia afra plant were blended and separated into two batches. 

The one batch was submerged in ddH2O and the second batch submerged in 80% 
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absolute ethanol. These were then placed in the dark at room temperature overnight. 

After incubation, the two batches were filtered using a 0.1 µm Whatman filter paper, in 

order to obtain a sediment free liquid filtrate. The aqueous batch was collected in a 50 

mL Falcon tube whereas the ethanol batch was placed in a 50 mL flask and placed 

over a water bath at 35°C where nitrogen gas was used to evaporate any excess 

ethanol. The remainder of the extract was then re-constituted in water so as to obtain 

an ethanol concentration of less than 5%. This was then placed into a 30 mL Falcon 

tube and frozen at -80°C overnight. These samples were then placed in freeze drying 

flasks and freeze dried for three days. 

 

2.4 MICROPLATE ALAMAR BLUE ASSAY (MABA) 

This assay was performed as described by Franzblau et al. (1998); Lougheed et al. 

(2009) with modifications. Clear 96 well plates (Corning, Scientific Group) were used 

initially, and for fluorimeter readings, contents were transferred to black plates. Outer 

perimeter wells were filled with sterile water to minimize evaporation of the medium in 

experimental wells during incubation. The wells in rows B to G in columns 3 to 11 

received 100 µL of Middlebrooks 7H9 broth (prepared as described in 2.1, but without 

Tween® 80). One hundred microlitres of drug to be tested was added to wells in rows 

B to G in columns 2 and 3. This was followed by the transfer of 100 µL from column 3 

to column 4 and the contents of the wells mixed well. Identical serial 1:2 dilutions were 

continued through to column 10 and 100 µL of excess medium was discarded from the 

wells in column 10. Final drug concentration ranges were as follows: OFX and RIF, 

0.0625 to 8.0 µg/mL; INH, 0.125 to 16.0 µg/mL; EMB and SM, 0.25 to 32 µg/mL. M. 

tuberculosis inoculum (100 µL of 1x108 cells/well) was added to the wells in rows B to 

G in columns 3 to 11. Wells in column 2 served as a drug only control to detect auto-

fluorescence of compounds and to determine whether the compounds have any effect 

on the alamar blue dye. Wells in column 11 served as a bacterial growth control. 

Plates were sealed with clear microplate sealing tape (Scientific Group) and incubated 

at 37°C for 7 days. On day 7, 20 µL of alamar blue reagent (CellTiter-Blue, Promega) 

and 12.5 µL 20% Tween® 80 was added to each well. Plates were observed after 6 h 

and incubated for a further 18 h as the colour change was not sufficient. A blue colour 

in the well was interpreted as no growth and a pink colour was scored as growth. The 

MIC was defined as the lowest drug concentration which prevents a colour change 

from blue to pink.  
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Due to the biosafety hazard of M. tuberculosis aerosols, the M. tuberculosis cells were 

killed using 10% formaldehyde after addition of alamar blue dye reagent. The 

fluorescence (relative fluorescence units, RFU) was then measured using a plate 

reader at 535 nm excitation and 590nm emission (Reis et al., 2004).  

 

Percent inhibition was defined as: 

Percent inhibition = 1 – (test well RFU/ mean RFU triplicate bacteria only well) x 100 

MIC was taken to be the lowest concentration of a drug capable of causing ≥90% 

inhibition compared to the untreated bacteria only controls (Collins and Franzblau, 

1997). 

 

2.5 P-IODONITROTETRAZOLIUM CHLORIDE (INT) ASSAY  

This assay was carried out as described by Eloff, (1998) using p-Iodonitrotetrazolium 

chloride (INT) dye. One hundred microliters of Middlebrooks 7H9 broth [supplemented 

with 10% albumin dextrose catalase (ADC), 1000 µg/mL of sodium nitrate (NaNO3) 

and 0.05% Tween® 80] were added to wells of a sterile 96-well plate from columns 3 

to 11. Drug concentration ranges were: RIF (0.01563 - 2.0 µg/mL); OFX (0.03125 - 4.0 

μg/mL); INH (0.003125 - 0.4 µg/mL); EMB (0.1172 - 15 µg/mL) and SM (0.01563 - 2.0 

μg/mL). Drug (100 µL) was added to wells in columns 2 and 3.  This was followed by 

transfer of 100 µL from column 3 to column 4 and serially diluted (2-fold dilutions) up 

to column 10. Columns 11 and 12 contained 100 and 200 µL of medium without drugs, 

respectively and served as the growth and medium controls respectively. The bacterial 

suspension (100 μL) (1.5 x 108 cells/ well) was added to wells in columns 3 to 11 to 

give a final volume of 200 µL per well. All plates were then sealed with microplate 

sealing tape and incubated at 37°C for 7 days after which 40 μL of 0.2 mg/mL INT dye 

(Sigma) was added to each well and left to incubate for 30-60 minutes after which if no 

colour change was observed, incubated for a further 23 hours. Viable bacteria reduce 

the yellow dye to a purple/pink colour and no colour change indicated inhibition of 

bacterial growth.  
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2.6 FLOW CYTOMETRY 

Flow cytometry analysis was conducted using fluorescein diacetate (FDA) according 

to the methods of Norden et al. (1995); Reis et al. (2004); Kirk et al. (1998) with 

modifications. M. tuberculosis culture [500 µL - equivalent to a McFarland 0.5 standard 

(1.5 x 108 bacteria)] was inoculated into freshly prepared Middlebrook 7H9 broth 

containing the following antibiotics and their concentration ranges respectively: OFX 

and RIF, 0.0625 to 8.0 µg/mL; INH, 0.125 to 16.0 µg/mL; EMB and SM, 0.25 to 32 

µg/mL. Drug-free growth controls and all tubes with antibiotics and broth cultures were 

incubated at 37°C for 72 hours. After incubation, 500 µL of each assay suspension 

was incubated for 1 h at room temperature with 100 µL of a 10% solution of 

formaldehyde to inactivate the M. tuberculosis cells. Formaldehyde inactivated M. 

tuberculosis cells (500 µL) were then centrifuged for 60 sec at 12000xg to pellet the 

cells. The supernatant was removed and the pellet re-suspended in 250 µL IsoflowTM 

EPICSTM Sheath fluid (Beckman Coulter). Prior to analysis, the cell suspension was 

vortexed, passed through a Neomedic 25 gauge micro-emulsifying needle 

(Separations), and vortexed again to ensure complete separation of the cells, and to 

avoid clumping. The cells were re-suspended by repeated pipetting and transferred to 

a cell flow cytometry tube. This re-suspension step was repeated. The re-suspended 

mixture (200 µL) was then incubated with 200 µL FDA (freshly prepared) at 500 ng/mL 

in phosphate buffered saline at pH 7.4. The samples were then incubated at 37°C for 

30 min before being analysed with a flow cytometer (Beckman Coulter FC500). 

Samples were analysed by histogram profiles of FDA fluorescence and 2 parameters 

were evaluated: events per minute (number of labelled mycobacteria) and mean 

channel fluorescence (intensity of fluorescence-labelled mycobacteria).  

 

2.7 DETECTION OF ANTI-HIV REVERSE TRANSCRIPTASE ACTIVITY USING A 

NON-RADIOACTIVE ELISA KIT 

The potential of plant extracts to inhibit reverse transcriptase was determined as 

outlined by Klos et al. (2009), with modifications, using a non-radioactive HIV-Reverse 

Transcriptase (RT) colorimetric ELISA kit from Roche Diagnostics. For the assay, 

reverse transcriptase was reconstituted in autoclaved re-distilled water to give a final 

concentration of 2 ng/µL stock. In a separate reaction tube, 1 µL of this stock solution 

was diluted with 19 µL of lysis buffer. Twenty microlitres of the extract samples and 

positive control, Nevirapine (Aspen), diluted to the required concentrations using lysis 
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buffer was then added to the respective tubes. The concentration range was the same 

for all extracts and for Nevirapine: 0.2 to 4 mg/mL. Twenty microlitres of prepared 

reaction mixture was then added to each tube. This was incubated for 1 h at 37°C. 

Controls included a background control containing lysis buffer alone, a negative 

control for inhibition which included HIV-1 RT with only lysis buffer and reaction 

mixture with no inhibitors, a solvent control which contained HIV-1 RT with only 

solvent (4% DMSO) in lysis buffer. After incubation, the total volume (60 µL) was 

transferred from each reaction tube to a well of a streptavidin coated module, covered 

with a cover slip and incubated for 1 h at 37°C. After incubation, the solution was 

removed from the wells and rinsed 5 times with 250 µL of washing buffer for 30 

seconds each. Two hundred microlitres of freshly prepared anti-DIG-POD was then 

added to each well. The plate was covered with a cover slip and incubated for 1 h at 

37°C. After incubation, the solution was removed and the rinsing step was repeated. 

Two hundred microlitres of ABTS (2, 2'-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic 

Acid) substrate solution was then added to each well and incubated at room 

temperature for 10-20 minutes. The absorbance was measured at 405 nm using a 

microplate reader. The HIV-RT inhibition by the plant extracts was measured as a 

percentage of the inhibition that occurred with HIV-1 RT in the absence of an inhibitor 

in the same solvent (4% DMSO) as the extracts. 

 

2.8 DETECTION OF ANTI-HIV-1 INTEGRASE ACTIVITY 

The potential of plant extracts to inhibit HIV-1 integrase was measured according to 

the manufacturer’s instructions using a non-radioactive HIV-1 integrase colorimetric kit 

supplied by XpressBio. For the assay, 100 µL of donor substrate (DS) DNA was 

added to each well and subsequently incubated for 30 min at 37°C. The liquid was 

removed from the plates and washed 5 times with 300 µL of 1x wash buffer. Two 

hundred microlitres of blocking buffer was added to each well and incubated for 30 

min at 37°C. The liquid was then aspirated from the wells and subsequently washed 3 

times with 200 µL of reaction buffer. The integrase enzyme was diluted 1:300 with 

reaction buffer before use, after which 100 µL of the diluted integrase was added to 

each well and incubated for 30 min at 37°C. The liquid was then aspirated from the 

wells and washed 3 times with 200 µL of reaction buffer. Fifty microlitres of the extract 

samples and positive control, sodium azide, at 2x the required concentrations using 

reaction buffer, were then added to the respective wells and incubated for 5 min at 
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room temperature. The concentration range was the same for all extracts: 0.025-4 

mg/mL. Controls included a background control, which contained reaction buffer 

alone, while the negative control for inhibition included HIV-1 integrase with only 

reaction buffer with no inhibitors, a solvent control which contained HIV-1 integrase 

with only solvent (4% DMSO) in reaction buffer. After incubation, 50 µL of target 

substrate (TS) DNA was added to each well and gently mixed. The plate was then 

incubated for 30 min at 37°C. The liquid was removed and the wells washed 5 times 

with 300 µL of wash buffer. One hundred microlitres of horseradish peroxidase (HRP) 

antibody solution was added to each well and incubated for 30 min at 37°C. The liquid 

was then removed and washed 5 times with 300 µL of wash buffer after which 100 µL 

of 3,3', 5,5'-tetramethylbenzidine (TMB) peroxidase substrate solution was added to 

each well and incubated for 10 min at room temperature. One hundred microlitres of 

TMB stop solution was then added to each well, which caused a colour change from 

blue to yellow at various intensities. The absorbance was measured at 450 nm using a 

microplate reader. The HIV integrase inhibition by the plant extracts was measured as 

a percentage of the inhibition that occurred with HIV-1 integrase in the absence of an 

inhibitor in the same solvent (4% DMSO) as the extracts. 

 

2.9 CYTOTOXICITY OF PLANT EXTRACTS 
 

2.9.1 Cell culture conditions and Cytotoxicity testing 

The adherent liver cell line, Chang Liver cells, and the adherent hepatocellular cell 

line, HepG2 were used for the experimental procedures. The cells were routinely 

maintained in 10 cm culture dishes without antibiotics in Eagle's Minimal Essential 

Medium (EMEM) supplemented with non-essential amino acids (NEAA) and 10% 

foetal bovine serum (FBS) and incubated in a humidified 5% CO2 incubator at 37ºC.   

 

Cytotoxicity was determined using the MTT (4,5-dimethylthiazol-2-yl)-2,5-diphenyl 

tetrazolium bromide) assay. A 10 cm culture dish containing either Chang liver or 

HepG2 cells was removed from the incubator and the monolayer subsequently 

trypsinised. Cells were suspended in EMEM supplemented with 10% FBS and NEAA 

to give 150,000 cells/mL (30 000 cells/well) and then seeded into a 96 well plate, (200 

µL suspension per well) and incubated overnight to allow the cells to attach. After 

incubation, the spent medium was removed and 200 µL of fresh EMEM supplemented 



27 

with 10% FBS and NEAA containing the plant extracts at concentrations ranging 

between 3.91 and 250 μg/mL was then added to the wells in triplicate. Both cell lines 

were incubated at 37°C in a humidified 5% CO2 incubator for 24 and 48 hours.  After 

the incubation, the medium was aspirated and replaced with 200 µL of fresh EMEM 

supplemented with 10% FBS and NEAA containing 0.5 mg/mL MTT [3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and subsequently incubated for 

3 hours. The medium was then removed and the MTT crystals solubilised by addition 

of 200 µL dimethyl sulfoxide (DMSO). The absorbance was then read at 540 nm using 

a BioTek® PowerWave XS spectrophotometer (Winooski, VT, USA).  

 

2.9.2 Potential for Synergistic hepatotoxicity between Plant Extracts and 

Rifampicin 

The adherent liver cell line, Chang liver, and the adherent hepatocellular cell line, 

HepG2, were used to investigate potential synergism. Cells were routinely maintained 

in 10 cm culture dishes, in Eagle's Minimal Essential Medium (EMEM), without 

antibiotics, supplemented with non-essential amino acids (NEAA) and 10% foetal 

bovine serum (FBS) and incubated in a humidified 5% CO2 incubator at 37ºC. 

 

Synergistic testing was conducted by calculating the combination index (CI) according 

to the method outlined by Chou (2010).  A 10 cm culture dish containing either Chang 

liver cells or HepG2 cells was removed from the incubator and the monolayer 

subsequently trypsinised. An appropriate volume of cells was suspended in EMEM 

supplemented with 10% FBS and NEAA to give 150,000 cells/mL (30 000 cells/well) 

and these were then seeded into a 96 well plate, using 200 µL suspension per well 

and incubated overnight to allow the cells to attach.  

 

After incubation, the spent medium was removed and 200 µL of fresh EMEM 

supplemented with 10% FBS and NEAA containing the combined plant extract and 

antibiotics at a fixed ratio, which was determined empirically using the following 

equation: 
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Where (a) represents the plant extract and (b) represents the antibiotic, in this case 

rifampicin. 

 

The above equation calculates the total concentration that was present in each well. 

This concentration was then divided by the fixed ratio, previously determined based on 

the respective IC50 values of the extracts and the antibiotic obtained from cytotoxicity 

tests, to determine the concentration of each component individually. Serial dilutions 

were made to obtain the appropriate concentration range. The plates were incubated 

for 24 hours and IC50 of the new combination was determined. The combination index 

was calculated using the following equation: 

 

    
  

        
  

  

       
 

 
Where Ca is the IC50 of the combination mixture plotted on an axis using the respective 

antibiotic concentrations, Cb is the IC50 of the combination mixture plotted on an axis 

using the respective plant extract concentrations. A combination index greater than 1, 

indicated a potential antagonistic relationship, and a value less than 1 indicated a 

synergistic relationship.  A value of 1 implies that the two components produced a 

purely additive effect.   

 

In order to obtain a full spectrum of whether synergistic effects were present at all 

concentrations of the extracts and the antibiotic, the above experiments were repeated 

using an IC25 and IC70. 

 

2.10 INTERACTIONS OF PLANT EXTRACTS WITH DRUG METABOLIC 

PATHWAYS 

 
2.10.1 CYP3A4 Inhibition Assay 
 
The CYP3A4 inhibition assay was conducted according to the manufacturer’s 

instructions (Life Technologies). The CYP3A4 baculosomes, regeneration system and 

NADP+ was thawed at room temperature and kept on ice until ready to use. The 

CYP3A4 baculosomes and regeneration system was mixed gently after thawing. The 

assay conditions for screening was performed as indicated in Table 2.1. 
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Table 2.1:  Assay Conditions (Life Technologies, USA). 

 
Condition Purpose Dispensing 

Test Compound Screen for inhibition by compound of 

interest 

40 μL 2.5X test compound 

50 μL Master Pre-Mix 

10 μL Substrate and NADP
+ 

Positive Inhibition 

Control 

Inhibit the reaction with a known P450 

inhibitor - Ketoconazole 

40 μL 2.5X positive inhibition control 

50 μL Master Pre-Mix 

10 μL Substrate and NADP
+ 

Solvent Control  

(No Inhibitor) 

Accounts for possible solvent inhibition 

caused by introduction of test 

compounds originally dissolved in an 

organic solvent such as DMSO 

40 μL 2.5X solvent control 

50 μL Master Pre-Mix 

10 μL Substrate and NADP
+ 

Background Enables subtraction of background 

fluorescence during data analysis 

40 μL 2.5X solvent control 

50 μL CYP450 Reaction Buffer 

10 μL Substrate and NADP+ 

 

 

The substrate was reconstituted using anhydrous acetonitrile according to Table 2.2. 

The fluorescent standard was reconstituted using DMSO. These solutions, once 

prepared, were then stored at room temperature for immediate use or at -20°C for 

long term use. 

 
Table 2.2:  Reconstitution of the CYP3A4 substrates (Life Technologies, USA). 

 

Isozyme 

Type 

CYP450 

Substrate 

mg/ tube μmol/ tube μL acetonitrile 

added per tube 

[stock solution] 

(mM) 

[screening conc.] 

(μM) 

3A4 BOMR 

(benzyloxymet

hylresorufin) 

0.1 0.30 150 2 3 

 

The 2X CYP3A4 reaction buffer was diluted with nanopure water to a desired 

concentration of 100 mM. This was used for the preparation of standards, inhibitors, 
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master pre-mix and substrate/NADP+ solutions. The diluted reaction buffer was stored 

at room temperature. 

 

In order to determine the IC50, a 2.5X dilution of the test compounds was prepared as 

well as a 2.5X solution of a known CYP3A4 inhibitor, ketoconazole, which acted as the 

positive control. The solvent, which was used to dissolve the test compounds, and 

ketoconazole, was prepared at 2.5X the final concentration. Forty microliters of the 

2.5X solutions prepared above was then added to desired wells of the 96 well plate 

and this was conducted in triplicate. 

 

The master pre-mix was then prepared by diluting the CYP3A4 baculosomes reagent 

and regeneration system in 1X CYP3A4 Reaction Buffer according to the values seen 

in Table 2.3. The solutions were kept at room temperature for immediate use. After 

preparation of the master pre-mix, 50 μL was added to each well and mixed. 

 
Table 2.3:  Master pre-mix preparation for the CYP3A4 isozyme (Life Technologies, USA). 

 
Isozyme 

Type 

CYP450 

Substrate 

µL of CYP450 

Reaction 

Buffer (2X) 

added 

μL of 

Regeneration 

System (100X) 

added 

μL of CYP450 

Baculosomes 

added 

Conc. Of CYP450 

in Master pre-mix 

(2X), nM 

Screening 

conc of 

CYP450, nM 

3A4 BOMR 4850 100 50 10 5 

 

The plates were then incubated for 10 minutes at room temperature to allow the 

compounds to interact with the CYP3A4 in the absence of enzyme turnover. During 

this pre-incubation, the pre-mixture of 10X substrate and NADP+ was prepared 

according to Table 2.4. 

 
Table 2.4:  Preparation of the substrate and NADP

+
 (Life Technologies, USA). 

 
Isozyme 

Type 

CYP450 

Substrate 

μL of CYP450 Reaction 

Buffer (1X) added 

μL of Reconstituted 

Substrate added  

μL of NADP
+
 

(100X) added  

3A4 BOMR 885 15 100 
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The reaction was then started by adding 10 μL per well of the 10X substrate and 

NADP+ mixture prepared above and the entire solution mixed. The plate was 

transferred into the fluorescent plate reader and the fluorescence monitored over time 

at excitation and emission wavelengths listed in Table 2.5. Readings were taken at 1 

minute intervals over a period of 60 minutes. 

 
Table 2.5: Excitation and emission wavelengths for the various fluorescent standards (Life 

Technologies, USA). The red fluorescent standard was used for this specific experiment. 

 

 

 

Red Standard was sodium salt or resorufin. Blue Standard was 3-cyano-7-

hydroxycoumarin. Cyan Standard was 7-hydroxy-4-trifluoromethylcoumarin. Green 

Standard was fluorescein. 

 

The reaction rates were then obtained by calculating the change in fluorescence per 

unit time and the percent inhibition due to presence of test compound or positive 

inhibition control were calculated using the equation below: 

 

              
     

 
       

 

Where X is the rate observed in the presence of the test compound, A is the rate 

observed in the absence of inhibitor and extract. 

 

2.10.2 Glutathione-S-Transferase Inhibition Assay 
 
Glutathione-S-Transferase (GST) inhibition by the plant extracts was conducted using 

the Glutathione-S-Transferase assay kit, with modifications, supplied by Sigma. 1-

 Fluorescent Standard 

Red Blue Green Cyan 

Fluorescence 

Plate Reader 

Excitation/ 

Emission 

Center 

(nm) 

Band 

width 

Center 

(nm) 

Band 

width 

Center 

(nm) 

Band 

width 

Center 

(nm) 

Band 

width 

With Filters Excitation 535 25 415 20 485 20 415 20 

Emission 590 20 460 20 520 25 420 45 
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Chloro-2,4-dinitrobenzene (CDNB) was used as the substrate as it is suitable for a 

wider range of GST enzymes. Human placental GST (Sigma) was purchased 

separately to be used in the assay in order to determine inhibition or stimulation, as 

opposed to GST production. A substrate master mix was prepared according to the 

amount of assays that needed to be conducted. Generally, a 10 mL master mix was 

sufficient for 50 assays and contained 9.8 mL of Dulbecco’s Phosphate Bufferred 

Saline (DPBS), 0.1 mL of 200 mM reduced L-Glutathione and 0.1 mL of 100 mM 

CDNB. Initial experiments were conducted to determine optimal GST activity and 

optimal extract concentrations that will not be too dark to be measured at an 

absorbance of 340 nm. The optimal amount of GST was found to be 55 units/mL. The 

optimal extract concentrations that gave reasonable readings were 0.0625 and 

0.03125 mg/mL. One hundred and eighty six microlitres of the substrate master mix 

was added into the required wells of a 96 well microplate. Ten microlitres of the plant 

extracts at the required concentrations was then added. Lastly, 4 µL of GST at 55 

units/mL was added and placed immediately in the plate reader and the absorbance 

was measured at 340 nm every minute for 30 minutes. Upon conjugation of the thiol 

group of glutathione to the CDNB substrate, there is an increase in absorbance. 

Controls included a negative control, which contained only substrate master mix, a 

positive GST control, which contained GST with no inhibitors and then a positive 

control for GST inhibition, which was ethacrynic acid (2 µg/mL) as it is a known 

inhibitor of GST.  

 

2.11 STATISTICAL ANALYSIS 

Significance determinations were obtained by applying Tukey's HSD test. All results 

with P < 0.05 were considered significant. IC50 values were calculated using GraphPad 

Prism Version 5.0. 
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CHAPTER THREE 

 

INHIBITORY ACTIVITIES AGAINST Mycobacterium tuberculosis AND 

HUMAN IMMUNODEFICIENCY VIRUS  

 

3.1 INTRODUCTION 

 

Tuberculosis (TB) is a contagious disease caused by Mycobacterium tuberculosis, 

which most commonly affects the lungs and is transmitted from person to person via 

droplets from the throat and lungs of people with the active respiratory disease (Tekwu 

et al., 2012). In 2011, TB remained the second cause of death from infectious disease 

worldwide. In 2010, according to the World Health Organization (WHO), TB incidence 

and prevalence were estimated at 8.8 and 12 million cases respectively. A total of 1.1 

million among HIV-negative people and 0.35 million among HIV-positive people died 

from TB in the same year (Villemagne et al., 2012, WHO, 2011). The association with 

the HIV epidemic, the increasing emergence of multi-drug resistant TB (MDR-TB) and 

extensively drug resistant TB (XDR-TB) have worsened the situation and posed a 

serious health threat (Rattan et al., 1998; Tekwu et al., 2012). TB is treatable but 

curing multi-drug resistant TB (MDR-TB) is very difficult and often requires very long 

courses of toxic drugs, thereby, raising serious problems of compliance (WHO, 2009). 

 

There is an urgent need to search for alternative antituberculosis drugs. Medicinal 

plants have become the focus of intense study recently in terms of conservation and 

as to whether their traditional uses are supported by actual pharmacological effects or 

merely based on folklore (Mohamad et al., 2011; Rabe and van Staden, 1997). The 

medicinal plant Annona muricata has been reported to be effective when applied 

topically as well as internally, for insomnia, diabetes, abscesses, headaches (de 

Sousa et al., 2010) while Artemisia afra has been employed in treating ailments 

ranging from coughs to kidney disorders (Liu et al., 2009).  

 

Bioassays for detecting activity against M. tuberculosis include: Microplate Alamar 

Blue assay (MABA), ρ-iodonitrotetrazolium chloride (INT) assay and flow cytomtery. 

MABA is a colorimetric method using an oxidation/reduction indicator dye, alamar blue 
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that changes colour from blue to pink to indicate bacterial growth and can be read 

visually without the need for instrumentation (Collins and Franzblau, 1997). The ρ-

iodonitrotetrazolium chloride (INT) assay is similar to MABA, however it uses p-

Iodonitrotetrazolium chloride (INT) dye which acts as an electron acceptor and is 

reduced to a purple/pink colour by biologically active organisms.  

 

The flow cytometry method employing fluorescein diacetate (FDA) is based on the 

ability of mycobacteria to hydrolyse fluorescein diacetate (FDA) to free fluorescein via 

non-specific cellular esterases. Accumulation of fluorescein in metabolically active 

mycobacterial cells can then be easily detected by using a flow cytometer. By contrast, 

mycobacteria that are killed or inhibited by anti-mycobacterial agents hydrolyse 

significantly less FDA and therefore have reduced levels of fluorescence (Kirk et al., 

1998).  

 

Reports at the end of 2010 indicated that there was an estimated 34 million people 

currently living with HIV globally, 2.7 million new infections and 1.8 million deaths due 

to AIDS related illnesses worldwide (UNAIDS, 2011). South Africa remains the most 

severely affected country with the HIV/AIDS epidemic having almost half of the total 

AIDS related deaths in 2010 as well as an estimated 5.6 million people living with HIV, 

more than any other country in the world (UNAIDS, 2011). 

 

As a result, an appreciable amount of research efforts have been devoted to the 

discovery of improved anti-retroviral agents especially through the screening of natural 

products. Only 25 drugs for the treatment of AIDS have been approved to date, of 

which none are a natural product (Sabde et al., 2011). Due to their relatively low cost, 

plants have been increasingly explored for production of medicinal compounds and 

vaccines. Many plant derived substances including phenyl coumarins and plant 

proteins have shown good anti-HIV activity (Tshikalange et al., 2008).  

 

Some of the main targets for HIV treatment include specific enzymes which are vitally 

important in the HIV life cycle such as reverse transcriptase, integrase and protease 

enzymes. HIV-1 reverse transcriptase is a multifunctional enzyme which catalyzes the 

synthesis of proviral DNA, using viral RNA as a template (Menéndez-Arias, 2002). 

HIV-1 integrase is responsible for two of the most essential steps in the HIV life cycle, 
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3’-processing and DNA strand transfer (Craigie, 2001). Due to the fact that HIV 

integrase plays such an integral role in the replication of HIV and because no cellular 

homologues are found in humans, inhibitors targeted selectively at HIV integrase are 

expected to have low cytotoxicity (Xu et al., 2009). HIV-1 protease functions by 

cleaving a number of specific sites on the precursor gag and pol polyproteins thus 

releasing other viral proteins. It is therefore essential for the production of infectious 

viral particles because if these polyproteins are not cleaved, no infectious viral 

particles are produced (Weber et al., 2001). For that reason, HIV protease is a prime 

target for anti-viral agents but because of the rapid development of inhibitor resistant 

variants of the protease enzyme, the therapeutic effectiveness of potential inhibitors is 

limited (Weber et al., 2001).   

 

HIV-1 reverse transcriptase inhibition is detected using a non-radioactive colorimetric 

enzyme immunoassay, which determines the quantity of retroviral reverse trancriptase 

activity by incorporation of digoxigenin and biotin labelled dUTP into DNA, producing a 

coloured reaction product. HIV-1 integrase is also detected using a colorimetric 

enzyme immunoassay, which quantitatively measures the inhibition of HIV-1 strand 

transfer activity due to the presence of interacting agents. 

 

The objective of this chapter was to investigate two South African medicinal plants: A. 

muricata and A. afra for potential anti-TB activity by preliminary bioassay screening 

using MABA, INT assays and flow cytometry. In addition the inhibition of important HIV 

enzymes in the virus lifecycle i.e. reverse transcriptase and integrase were also 

determined. The selection of plants for evaluation was based on traditional use and 

the presence of highly active compounds like acetogenins and terpenes, which have 

previously been shown to possess anti-TB and anti-HIV activity (Cantrell et al., 2001; 

Vik et al., 2007 and Sun et al., 2003). 
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3.2 RESULTS 

 

3.2.1 Anti-TB Screening 

3.2.1.1 Microplate Alamar Blue Assay 
 
The Microplate Alamar Blue Assay using M. tuberculosis H37Rv ATCC 27294 (7 tests) 

revealed that the ethanolic extract of A. muricata produced ˃81% inhibition of M. 

tuberculosis at an MIC of 125 μg/mL. From visual observation, MIC values of five 

control drugs were 0.3125 µg/mL (rifampicin), 2 µg/mL (ofloxacin), 0.4 µg/mL 

(isoniazid), 15 µg/mL (ethambutol) and 2 µg/mL streptomycin (Fig. 3.1). Percentage 

inhibition of M. tuberculosis calculated from MABA absorbance values was, 75.89% 

(rifampicin), 91.09% (ofloxacin), 91.04% (isoniazid), 92.13% (ethambutol), 91.76% 

(streptomycin), and 81.63% for A. muricata (Fig. 3.2, Appendix Table A1). A. afra 

(aqueous and ethanolic extract) did not show any anti-TB activity using MABA at the 

highest concentration tested. 

 
 
 

 

 
Figure 3.1: Anti-TB activity of A. muricata using MABA. Well 2 (all rows): Antibiotic Control. Well 11 

(all rows): Bacterial Growth Control. Concentrations of antibiotics: Rifampicin wells 3-10 

(0.016 – 2.0 μg/mL), Ofloxacin wells 3-10 (0.031 – 4.0 μg/mL), Isoniazid wells 3-10 

(0.003 – 0.4 μg/mL), Ethambutol wells 3-10 (0.117 – 15.0 μg/mL), Streptomycin wells 

3-10 (0.016 – 2.0 μg/mL). Concentrations of A. muricata wells 3-10 (3.906 – 500 

μg/mL).  
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Figure 3.2: Percentage inhibition of M. tuberculosis determined using MABA for the five control 

drugs and for A. muricata. Data points represent the mean ± SD of several 

determinations, representative of seven independent experiments. 

 

3.2.1.2 ρ-Iodonitrotetrazolium Chloride Assay 
 
The ρ-iodonitrotetrazolium chloride assay using M. tuberculosis H37Rv ATCC 27294 

(7 tests) indicated that the ethanolic extract of A. muricata showed inhibition of M. 

tuberculosis with MIC 125 μg/mL which corresponds to the MIC obtained by MABA 

(Fig. 3.3). A. afra (aqueous and ethanolic extract) did not show any anti-TB activity 

using INT assay, which confirmed the results obtained using MABA. 

 

 
 
Figure 3.3: Anti-TB activity of A. muricata using INT assay. Well 11 (all rows): Bacterial Growth 

Control. Wells B-G: replicates of Annona muricata.  Concentrations of Annona 

muricata: wells 2 – 10: 500 μg/mL - 3.906 μg/mL. 

 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 

Rifampicin               
1 µg/mL 

Ofloxacin               
2 µg/mL 

Ethambutol             
7.5 µg/mL 

Streptomycin           
1 µg/mL 

Isoniazid          
0.2 µg/mL 

A. muricata       
125 µg/mL 

P
e
rc

e
n

ta
g

e
 I

n
h

ib
it

io
n

 o
f 

M
. 

tu
b

e
rc

u
lo

s
is

 

Concentrations of antibiotics and plant extract at MIC values 



38 

 

 

Figure 3.4: Percentage inhibition of M. tuberculosis determined using INT for the five control drugs 

and for A. muricata. Data points represent the mean ± SD of several determinations, 

representative of seven independent experiments. 

 
 
3.2.1.3 Flow Cytometry  
 
Susceptibility of Mycobacterium tuberculosis H37Rv ATCC 27294 was determined by 

comparing the mean channel fluorescence of the drug free control with those that 

were exposed to antibiotics and plant extracts. For the seven tests, there was a 

decrease in the mean channel fluorescence of the antibiotic treated samples, at 

various concentrations, compared to the drug free control, indicating susceptibility of 

M. tuberculosis cells after exposure to ethambutol, which resulted in 74.1% inhibition 

(Figure 3.5A). A similar effect was observed for the M. tuberculosis and extract treated 

samples compared to the extract free control (Figure 3.5B), with the ethanolic extract 

of A. muricata producing 57% inhibition at a concentration of 500 µg/mL. Of the five 

control drugs previously used for MABA and INT, only ethambutol was used for flow 

cytometry because of discrepancies when the other antibiotics were used. Due to 

negative inhibitory results obtained for both the aqueous and ethanol extracts of A. 

afra in both the MABA and INT assays, they were not tested utilising flow cytometry 

due to the financial implications of the technique. 
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Figure 3.5: Flow cytometry data of the M. tuberculosis culture H37Rv ATCC 27294 exposed to 

various concentrations of (A) ethambutol (B) Annona muricata versus the untreated 

growth control.  Percentage inhibition was calculated using the mean fluorescence 

intensities of metabolised FDA. Data points represent the mean ± SD of several 

determinations, representative of seven independent experiments. 

 

3.2.1.4 Comparison of bioassays used for detection of anti-TB activity of A. 
muricata 

 
Comparison of bioassays revealed that MABA exhibited 100% sensitivity and is 

considered to be the best assay when compared with INT and flow cytometry, which 

exhibited sensitivities of 85.7% and 100% respectively (Table 3.1). However, only one 

antibiotic was used for flow cytometry and therefore the 100% sensitivity is not directly 

comparable to the other methods utilised. There was a strong correlation between 

MABA and INT as both assays indicated an MIC of 125 μg/mL. However, flow 

cytometry is a more sensitive technique and detected small amounts of inhibition 

occurring at low concentrations of antibiotic and extract and therefore the MIC was 

inconclusive. 
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Table 3.1: Comparison of the assays used for detection of anti-tuberculosis activity.  

 

  M. tuberculosis H37Rv ATCC 27294      

 
Antibiotics (A) Plant Extracts (P) 

Total Tests 
for 

antibiotics 

Total 
Tests 

for 
plant 

extracts 

Sensitivity 
(%) 

Assay 
Reproducible 

Results 
Discrepancies 

Reproducible 
Results 

Discrepancies 
   

A
 

P
 

MABA 7 0 7 0 7 7 100 100 

INT 6 1 6 1 7 7 85.7 85.7 

Flow 
Cytometry 

7 0 7 0 7
a 

7 100 100 

   *Sensitivity = [(no. True positives)/(no. True positives + no. False negatives)] * 100 
   

a
Only one antibiotic was utilised – Ethambutol, as discrepancies occurred with other antibiotics 

 

    

Direct comparison of the results obtained with the different methods revealed the 

following: MABA and flow cytometry produced statistically significant differences with 

regards to the average percentage inhibition obtained (P < 0.05). MABA and INT did 

not show statistically significant differences, indicating that they produced very similar 

average percent inhibitions, whereas INT and flow cytometry also produced 

statistically significant differences (Appendix Table A3). 

 

3.2.2 Anti-HIV Screening 

3.2.2.1 HIV-1 Reverse Transcriptase Assay 

The non-radioactive ELISA assay used to determine reverse transcriptase inhibition (3 

tests in triplicate) revealed that the only extract exhibiting significant reverse 

transcriptase inhibition was the aqueous extract of A. afra with ˃78% inhibition at 0.5 

mg/mL. The ethanolic extracts of A. muricata and A. afra showed no inhibitory activity 

against reverse transcriptase at very high concentrations of the extracts. Nevirapine, 

supplied by Aspen, was used as the positive control and exhibited 100% inhibition of 

reverse transcriptase at concentrations higher than 2 mg/mL (Fig. 3.6 and Fig. 3.7). 
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Figure 3.6: Visual representation of colour change observed for five concentrations (in triplicate) of 

the aqueous extract of Artemisia afra. A1, B1, C1: 0.2 mg/mL; D1, E1, F1: 0.5mg/mL; 

A2, B2, C2: 1 mg/mL; D2, E2, F2: 2 mg/mL; A3, B3, C3: 4 mg/mL; G1, G2, D3: 

Nevirapine (0.5 mg/mL); H1, H2, E3: Negative Control. 

 

Figure 3.7: Percentage inhibition of HIV-1 reverse transcriptase obtained for various concentrations 

of ethanolic extract of A. muricata and aqueous and ethanolic extracts of Artemisia afra. 

Positive control [Nevirapine (Aspen) – 2 mg/mL, 100% inhibition]. Data points represent 

the mean ± SD of three determinations, representative of three independent 

experiments. 
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3.2.2.2 HIV-1 Integrase Assay 

The non-radioactive enzyme immunoassay used to determine integrase inhibition (2 

tests in triplicate) indicated that all extracts possessed activity against HIV-1 integrase 

(Fig. 3.8). The ethanolic extracts of A. afra and A. muricata produced similar results, 

with extensive inhibition ˃86.8% and ˃88.54% respectively at concentrations >0.5 

mg/mL to 4 mg/mL. The aqueous extract of A. afra produced less activity, but still 

noticeable with inhibition of HIV-1 integrase ˃52.16% at 0.5 mg/mL increasing to 

72.89% at 4 mg/mL of the extract. It was possible to determine IC50 values for A. 

muricata, the ethanolic extract of A. afra and the aqueous extract of A.afra. They were 

0.125 mg/mL, 0.082 mg/mL and 0.450 mg/mL respectively.  

 

Figure 3.8: Percentage inhibition of HIV-1 integrase obtained for various concentrations of 

ethanolic extract of A. muricata and aqueous and ethanolic extracts of Artemisia afra. 

Data points represent the mean ± SD of three determinations, representative of three 

independent experiments. 

 

The positive control used for HIV-1 integrase inhibition was sodium azide at 

concentrations ranging from 0.25 to 2% (v/v) (Fig. 3.9).  Sodium azide, at 

concentrations 1% and above, achieved HIV-1 integrase inhibition ˃97%. 
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Figure 3.9: Percentage inhibition of HIV-1 integrase obtained for various concentrations of sodium 

azide (a known inhibitor of HIV-1 integrase). Data points represent the mean ± SD of 

three determinations, representative of three independent experiments. 

 

3.3 DISCUSSION 
 
The increase of resistance to conventional antibiotics by Mycobacterium tuberculosis 

has necessitated the search for new, efficient and cost effective ways for the control of 

this disease as well as a more rapid approach in novel drug discovery which would 

also aid in the control of MDR-TB (Green et al., 2010).  

 
A. muricata ethanolic extract exhibited anti-TB activity while A. afra showed no activity. 

In traditional medicine A. muricata extracts are used to alleviate coughs, asthma and 

chest pains and thus this anti-TB activity is relevant. It has also been known to be 

effective against Staphylococcus aureus, Enterococcus faecalis, Escherchia coli and 

Plasmodium falciparum (Yasunaka et al., 2005 and Boyom et al., 2011). This is the 

first report of an A. muricata extract showing activity against M. tuberculosis. 

 

Inhibitory activity of A. afra, has been reported against M. tuberculosis but only in 

certain chemical extracts. Ntutela et al. (2009) used aqueous, methanol and 

dichloromethane extracts of A. afra and showed, that only the dichloromethane extract 

inhibited M. aurum and M. tuberculosis cultures in a dose dependant manner, with the 

methanolic and aqueous extracts having no inhibitory effects. However, it was found 

that treatment of M. tuberculosis infected mice with the aqueous extract of A. afra 

regulated pulmonary inflammation during early infection (Ntutela et al., 2009 and Patil 

et al., 2011). These reports were confirmed by Liu et al. (2009) and Mativandlela et al. 
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(2008) who also found no anti-TB activity present in the methanolic extract of A. afra, 

but when Mycobacterium smegmatis was tested, inhibitory activity was detected. This 

corresponds to our findings, with no activity in the ethanolic extract of A. afra. This lack 

of activity may be as a result of the solvents used as the different phytochemicals 

present in the plant extract into different solvents due to the differences in polarity. A. 

afra has a wide array of phytochemicals present ranging from monoterpenoids to 

sesquiterpenes (Liu et al., 2009). The solvent used to extract certain phytochemicals 

would differ, for example, some plants contain alkaloids that will only extract into 

alcohol, whereas others contain an alkaloid that will extract into water, but will be 

destroyed in alcohol. Therefore the most active phytochemicals may extract best into 

dichloromethane (Ntutela et al., 2009).  

 

The overall performance of MABA in this study was good indicating MIC’s of the 

antibiotics by visual detection. This is in agreement with reports of MABA for 

susceptibility testing demonstrated by other investigators, including a concordance 

rate of 93.6% with the BACTEC 460 results observed by Franzblau et al. (1998); 

Bastian et al. (2001); Chauca et al. (2007); Leonard et al. (2008); Estrada-Soto et al. 

(2009); Alba-Romero et al. (2011); Lawal et al. (2011) and Tekwu et al. (2012). The 

INT assay, which also performed adequately, exhibited identical results to that of 

MABA, showing anti-TB activity at MIC of 125 μg/mL for A. muricata.  INT also 

confirmed that no anti-TB activity was present in A. afra. The INT assay has been 

applied to E. coli, S. aureus, P. aeruginosa and M. smegmatis for the detection of 

antibacterial activity (Eloff, 1998; Kuete et al., 2008; Smith and McFeters, 1997). 

 

Due to the biohazard risk of M. tuberculosis, exposure to 10% formaldehyde for one 

hour was required in order to kill the TB cells. The addition of the formaldehyde 

decreased the colour intensity of the wells, consistently including the control. There 

was a strong correlation with the visual MIC’s and the fluorimetric readings obtained, 

which is similar to the findings of Collins and Franzblau (1997), who reported a high 

correlation between MIC obtained visually and fluorimetrically using MABA. MABA has 

many advantages by being a non-radiometric, inexpensive, rapid, high-throughput 

assay, which could prove very useful for large scale screening of plant extracts against 

M. tuberculosis.  
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Flow cytometry makes use of fluoroscein diacetate (FDA) for the detection of M. 

tuberculosis, FDA diffuses across cell walls and membranes by active transport and is 

rapidly hydrolyzed by mycobacterial esterases. Metabolically inactive cells have 

decreased quantities of esterases and thus exhibit less fluorescence. Mycobacteria 

are susceptible to various anti-mycobacterial agents and the effect of these on the 

cells causes decreased capacity to hydrolyze FDA. Susceptibility was determined by 

comparing the mean channel fluorescence of the drug free control with those that 

were exposed to the antibiotic, ethambutol, and the plant extract A. muricata. The 

decrease in mean channel fluorescence for those cells that were treated with 

ethambutol, were similar to findings  of Kirk et al. (1998); Reis et al. (2004) and 

Norden et al. (1995). The A. muricata exposed samples also exhibited a decrease in 

the mean channel fluorescence similar to the drug control. 

 

It was also possible to determine which assay was the cheapest and fastest to 

conduct, however when observing the price, there was no substantial difference 

between the preparation and starting materials of each assay, provided that the 

necessary equipment was already available. In terms of duration, MABA and INT took 

longer as they required 10 days growth period and 7 days assay incubation whilst flow 

cytometry only requires 3 days assay incubation in addition to the 10 day growth 

period. This 5 day difference favours flow cytometry with a shorter duration for 

obtaining results, however flow cytometry did not provide accurate MIC values and is 

more technically complicated to conduct as opposed to MABA and INT. 

 

MABA was the most sensitive and simplest with regards to antibiotic and plant extract 

testing, and was 100% reproducible for both. Flow cytometry can only be used for the 

detection of susceptibility of M. tuberculosis to antibiotics, as accurate MIC values 

could not be ascertained. INT showed 85.7% reproducibility, possibly because of the 

presence of chloride in the dye, which may have interfered with the results obtained. 

 

This is the first report of the plant extract A. muricata showing anti-TB activity. There is 

paucity of information and scientific validation on the use of plant extracts to cure 

tuberculosis and its related symptoms. Further experiments need to be conducted to 

confirm this finding and to determine the active compound of the A. muricata extract 

which is causing inhibition of M. tuberculosis. 
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Despite advances in anti-retroviral therapy which has transformed HIV/AIDS from a 

fatal to a manageable chronic disease, there remain considerable challenges. Highly 

active anti-retroviral therapy (HAART) is limited by its cost, the requirement of lifelong 

adherence, toxicity and side effects. In addition, the poor results of vaccine 

development along with the emergence of drug resistant HIV strains makes it 

impossible to rely on a few standard drug regimens (Leteane et al., 2012; Bessong et 

al., 2005; Klos et al., 2009; Mukhtar et al., 2008). 

 

The HIV enzymes, such as reverse transcriptase, integrase and protease, have been 

specific targets for many therapeutic drugs. The aqueous extract of A. afra exhibited 

substantial inhibition of HIV-1 reverse transcriptase while the ethanolic extracts of A. 

afra and A. muricata showed slight inhibition but at very high concentrations of the 

extracts. It was recently reported by Lubbe et al. (2012), that A. afra possesses anti-

HIV activity through the utilisation of tea infusions, however the method of detection 

was different to this study. Lubbe et al. (2012) made use of two independent 

approaches, namely the Infection format of Fusion Induced Gene Stimulation (iFIGS) 

and the dual enhancement of Cell Infection to Phenotype Resistance (deCIPhR), 

which both used genetically modified human HeLa cell lines, which were infected with 

HIV-1. However, inhibition of HIV-1 reverse transcriptase activity has not been 

previously documented for Artemisia afra aqueous extract. The anti-HIV activity 

reported by Lubbe et al. (2012) could possibly be a result of the reverse transcriptase 

inhibition observed in the present study. 

 

Liu et al. (2009) reported that the combination of A. afra with standard forms of HIV 

treatment yielded positive results and suggested that A. afra may exhibit some 

antiviral activity or immune boosting properties. The ethanolic extract of A. afra 

exhibited considerably lower activity when compared to the aqueous extract. This may 

be due to solvent compatibility to phytochemical extraction, the ethanol may destroy 

the active compound(s) responsible for the HIV reverse transcriptase inhibition. 

 

The ethanolic extracts of A. afra and A. muricata showed greater activity against HIV-1 

integrase than that of the aqueous extract of A. afra. This is interesting and suggests 

that there is a specific mechanism and a specific compound acting in each mode of 

inhibition and not just a compound which has a general affect on the envelope or the 
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receptors of the virus. The activity observed for the ethanolic extracts of A. afra and A. 

muricata was very similar, which might suggest that the ethanol extracted a compound 

which is structurally similar to both plants. The activity exhibited from A. muricata may 

be due to the group of compounds known as acetogenins, as they have previously 

displayed anti-HIV activities at very low concentrations (Aminimoghadamfarouj et al., 

2011). The inhibition of HIV-1 integrase by A. afra and A. muricata has not been 

previously documented. It would be beneficial to determine which phytochemical(s) 

are being produced from each of these plants, that are responsible for this activity 

against HIV-1 integrase and to establish whether the active chemicals are similar. 

 

The determination of anti-HIV-1 protease activity exhibited by these two extracts would 

have provided more evidence to the efficacy of these two extracts against HIV, 

however due the availability of reagents being limited and the cost for an appropriate 

kit being out of budget, anti-HIV-1 protease activity was unfortunately not determined. 

 

These findings provide evidence that natural sources, such as plants, can provide 

new, inexpensive means of treatment. However, further experiments should be 

conducted in order to verify the anti-HIV activities exhibited by A. muricata and A. afra 

as well as to identify the active compounds present. 
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CHAPTER FOUR 

 

PLANT EXTRACT CYTOTOXICITY AND SYNERGISTIC EFFECTS 

 

4.1 INTRODUCTION 

Tuberculosis (TB) and Human Immunodeficiency Virus (HIV) have a very high 

prevalence in South Africa and it is known that the current treatment therapies used to 

combat TB and HIV can lead to adverse reactions such as hepatotoxicity. The 

incidence of hepatotoxicity may vary from 2 to 28% in different populations and can 

occur even when the drug has been given at the recommended doses (Tostmann et 

al., 2008; Singh et al., 2011). This side effect often results in patients discontinuing 

treatment, which inevitably leads to morbidity, mortality and most likely the emergence 

of drug resistant strains (Singh et al., 2011). 

 

As a result of this high hepatotoxicity, many individuals have redirected their interest to 

natural products such as plants. The secondary metabolites produced by some plants 

possess many biological activities, either serving as protective agents against various 

pathogens or as specific growth regulatory molecules, which can stimulate or inhibit 

cell division (Mativandlele, 2008). The popular perception is that, because the 

products from plants are natural, they are safe and that they have been used for 

centuries without harmful effects (Willet et al., 2004). The history of a product’s use is, 

however, not a guarantee of safety, particularly with respect to long term use, at 

relatively high doses or with other medications (Willet et al., 2004). One of the most 

serious safety concerns for natural plant product usage, is the potential for liver injury, 

as many have documented that herbal products such as kava, germander, chaparral, 

Ephedra, and comfrey have been associated with rare but severe cases of liver failure 

(Estes et al., 2003; Favreau et al., 2002; Stedman, 2002; Teschke et al., 2003; Willet 

et al., 2004). As a result of these reactions, the cytotoxic evaluation of plant extracts is 

essential before they can be considered for new drug development. 

 

Cytotoxicity tests are part of developing a potential pharmaceutical product into a 

clinically acceptable drug. These tests provide a screening method to determine that 

the compounds being tested are not more harmful to the normal biological processes 
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than the effects they are being tested for (Mativandlele, 2008). There are various 

methods to screen for possible cytotoxic effects of plant extracts, however the simplest 

and most commonly used is that of the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl 

tetrazolium bromide (MTT) assay. It provides a quantitative approach of determining 

mammalian cell survival and proliferation in vitro. There are many other methods such 

as the sulforhodamine B (SRB) assay and the chlonogenic assay. 

 

As a result of plant extracts being used as alternative medicine to alleviate the 

symptoms of TB and HIV, it is important to determine if any synergistic or antagonistic 

relationships could develop between the newly found plant extracts and existing drugs 

which the patient may be using. Synergism is defined as a positive interaction created 

when two agents are combined and together they exert an inhibitory effect on the 

targeted organisms that is greater than the sum of their individual effects (Chanda and 

Rakholiya, 2011). Antagonism occurs when the effect of two drugs together is less 

than the effect of either alone and indifference is when no effect is exhibited (Chanda 

and Rakholiya, 2011).  

 

Altered pharmacokinetics almost inevitably leads to a significant change in the 

response to drugs that have narrow therapeutic indices; however, given that a single 

herbal preparation may contain more than 100 components, all of which may have 

unknown biological activities, a herb has the potential to mimic, increase, or reduce 

the effects of co-administered drugs through simultaneous effects on the same drug 

targets (Zhou et al., 2007). If the effect of the drug in combination with the herbal 

medicine is enhanced, i.e. synergistic or additive effect, unfavourable toxicity may 

occur. By contrast, some herbal remedies may contain compounds with antagonistic 

properties, which are likely to reduce drug efficacy and produce therapeutic failure 

(Zhou et al., 2007). The synergistic or antagonistic effects between herbs and drugs 

often result from the competitive or complementary effect of the drug and the co-

administered herbal constituents at the same drug targets (Zhou et al., 2007).  

 

In phytotherapy, there are significant advantages that can be associated with 

synergistic interactions, such as increased efficiency, reduction of undesirable effects, 

increase in stability or bioavailability of the free agents and obtaining an adequate 

therapeutic effect with relatively small doses, when compared with synthetic 
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medication (Chanda and Rakholiya, 2011). Some examples where synergism has 

been observed include the experiments conducted by Souto de Oliveira et al. (2011) 

who showed synergistic activity of norfloxacin, tetracycline and erythromycin with the 

ethanol extract of Mangifera indica L. peel against S. aureus strains; Aiyegoro et al. 

(2009) showed that acetone, chloroform, ethyl acetate and methanol extracts of 

Helichrysum longifolium in combination with six antibiotics comprising of penicillin G 

sodium, amoxicillin, chloramphenicol, oxytetracycline, erythromycin and ciprofloxacin 

improved the bactericidal effects of the antibiotics against a panel of bacterial isolates; 

Chatterjee et al. (2009) showed the in vitro synergistic effect of doxycycline and 

ofloxacin in combination with ethanolic leaf extracts of Vangueria spinosa against four 

pathogenic bacteria. This substantiates the need for understanding the molecular 

mechanisms of synergy, which could provide a new strategy for the treatment of 

infectious diseases, overcome drug resistant pathogens and decrease the use of 

antibiotics and hence the side effects created by them. 

 

Therefore, the ethanolic and aqueous extracts of Artemisia afra and the ethanolic 

extract of Annona muricata were subjected to cytotoxicity testing with MTT and 

synergistic testing by the combination index method, performed using the Chang Liver 

cell line and the Human hepatoma cell line, HepG2. Previously it was shown that 

extracts with high antioxidant activity could convert the MTT dye to the purple 

formazan product, therefore it should be stated that the MTT assay was performed in 

such a way that the extracts did not interfere with the result, by firstly removing the 

extract before addition of the MTT, in fresh medium, and secondly the medium 

containing the MTT was removed after incubation and only the purple formazan 

crystals in the cells were solubilised with DMSO.  
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4.2 RESULTS 

 

4.2.1 Cytotoxicity 

 

4.2.1.1 Chang Liver Cell Line 

The cytotoxic effects of the aqueous and ethanolic extracts of A. afra and the ethanolic 

extract of A. muricata were determined using the MTT assay for Chang liver cells. The 

aqueous and ethanolic extracts of A. afra yielded IC50 values greater than 250 μg/mL 

and thus were considered to be nontoxic to confluent Chang liver cells (results not 

shown). The IC50 value obtained for the ethanolic extract of A. muricata against the 

confluent Chang liver cell line was 29.38 μg/mL (Fig. 4.1). From these results, the 

concentration of the ethanolic extract of A. muricata to be used for further experiments 

was fixed at 30 μg/mL for Chang liver cells.  
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Figure 4.1: Cytotoxic effect of A. muricata ethanol extract on confluent Chang liver cells after 24 

hours of exposure. Cell viability was determined by using MTT assay. Error bars 

indicate Standard deviation (SD) of ten replicate values. 

 

The cytotoxic effects for rifampicin, one of the first line drugs used to treat TB, was 

determined using the MTT assay for confluent Chang Liver cells. A concentration 

range between 0 and 150 µM was tested and the IC50 value obtained was 72.40 

μg/mL (Fig. 4.2). From these results, the concentration of rifampicin to be used for 

synergy experiments was fixed at 70 μg/mL for Chang liver cells. 
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Figure 4.2: Cytotoxic effect of Rifampicin on confluent Chang liver cells after 24 hours of exposure. 

Cell viability was determined by using MTT assay. Error bars indicate SD of four 

replicate values. 

 

4.2.1.2 HepG2 Cell Line 

The cytotoxic effects of the aqueous and ethanolic extracts of A. afra and the ethanolic 

extract of A. muricata were determined using the MTT assay for HepG2 cells. The 

aqueous and ethanolic extracts of A. afra yielded IC50 values greater than 250 μg/mL, 

similar to that of the Chang liver cells, and thus were considered to be nontoxic to 

confluent HepG2 cells (results not shown). The IC50 value obtained for the ethanolic 

extract of A. muricata against the HepG2 cell line was 76.68 μg/mL (Fig. 4.3). From 

these results, the concentration of the ethanolic extract of A. muricata to be used for 

further experiments was fixed at 77 μg/mL for HepG2 cells. 
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Figure 4.3: Cytotoxic effect of A. muricata ethanol extract on confluent HepG2 cells after 24 hours 

of exposure. Cell viability was determined by using MTT assay. Error bars indicate SD 

of four replicate values.  



53 

The cytotoxic effects for rifampicin were determined using the MTT assay for HepG2 

cells. A concentration range between 0 and 150 µM was tested and the IC50 value 

obtained was 134.80 μg/mL (Fig. 4.4). From these results, the concentration of 

rifampicin to be used for synergy experiments was fixed at 135 μg/mL for HepG2 cells. 
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Figure 4.4: Cytotoxic effect of Rifampicin on confluent HepG2 cells after 24 hours of exposure. Cell 

viability was determined by using MTT assay. Error bars indicate SD of four replicate 

values. 

 

4.2.2 Synergy Experiments using the CI method 

Combination studies were conducted using the IC50 values obtained in section 4.1, to 

determine whether there was a synergistic, antagonistic or purely additive effect when 

the ethanolic extract of A. muricata and the anti-TB drug, rifampicin, are used 

simultaneously. The combination index (CI) is the natural law based general 

expression of pharmacologic drug interactions (Chou, 2010). It is shown to be the 

simplest possible way for quantifying synergism or antagonism (Chou, 2010).  

 

Using the IC values, Ca and Cb values in Table 4.1, the combination index was 

determined using Equation below:  

 

    
  

                    
  

  

                
 

 

Example using the IC50 for A. muricata, rifampicin and the combination of both for 

Chang Liver cells:   
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The CI obtained in the example above was very close to 1, indicating a purely additive 

effect was achieved when the extract and rifampicin were used in combination. This 

equation was applied to all IC values obtained for both cell lines and CI results 

obtained are indicated in Table 4.1. 

 

Table 4.1: Summary of the IC25, IC50 and IC70 values obtained for the ethanolic extract, A. 

muricata alone, rifampicin alone as well as the IC25, IC50 and IC70 values of each when 

used in combination for both the Chang liver and HepG2 cell lines. Combination index 

also provided. 

 

 (A) Chang liver Cells (µg/mL) (B) HepG2 Cells (µg/mL) 

(a) Annona muricata   

IC25 9 ND 

IC50 30 77 

IC70 80 90 

   

(Ca) Combination IC25 5.322 ND 

(Ca) Combination IC50 22.43 27.78 

(Ca) Combination IC70 19.43 3.454 

   

(b) Rifampicin (A) Chang liver Cells (µM) (B) HepG2 Cells (µM) 

IC25 35 ND 

IC50 70 135 

IC70 47 145 

   

(Cb) Combination IC25 191.2 ND 

(Cb) Combination IC50 24.03 46.72 

(Cb) Combination IC70 26.04 5.819 

   

CI – IC25 6.05 ND 

CI – IC50 1.10 0.71 

CI – IC70 0.74 0.079 

*ND – Not determined 
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From Table 4.1, when focussing on Chang liver cells, it is evident that using A. 

muricata and rifampicin in combination only at their IC70 values produces a synergistic 

effect, where as an antagonistic effect is observed when used at their IC25 values and 

a purely additive effect when used at their IC50 values. For HepG2 cells, it seems that 

a synergistic effect is produced when the extract and rifampicin are used in 

combination at both the IC50 and IC70 values. This effect was more pronounced at the 

IC70.  No IC25 value was observed for HepG2 cells. 

 

4.3 DISCUSSION 

Cell based assays are frequently used for drug discovery using high throughput 

screening, environmental assessment of chemicals and biosensors for monitoring 

cellular behaviour (Vahdati-Mashhadian et al., 2007). Some biochemical methods, 

such as the MTT assay are widely used in toxicity screening assays. Due to the rapid 

spread of TB and HIV and the desperate need for novel, less toxic forms of treatment, 

natural products have become a major source of potential anti-TB and anti-HIV 

compounds. However, before these compounds can be considered for  human use, 

their cytotoxic properties need to be determined as well as any synergistic or 

antagonistic properties that might arise when used in combination with regular 

prescription drugs that are used for the treatment of TB and HIV. 

 

Chang liver and HepG2 cells were used for the cytotoxic experiments as they are both 

representative liver cell lines and as majority of drugs are detoxified by the liver, any 

cytotoxic effects produced from these extracts would thus have an effect on the course 

of TB and HIV treatment and thus would not be beneficial. Results of the MTT assay 

show that the ethanolic extract of A. muricata possesses significant toxicity at 

concentrations of 30 µg/mL and 77 µg/mL for Chang liver cells and HepG2 cells 

respectively. A. muricata has been reported to have cytotoxic effects on human 

melanoma cells, while the aqueous, ethanolic and pentane extracts had IC50 values 

greater than 500 µg/mL, 20 µg/mL and 120 µg/mL respectively (Menan et al., 2006). 

These cytotoxic concentrations produced by A. muricata are reasonably low, indicating 

that any dose greater than these concentrations will cause cell death, which is 

undesirable especially because A. muricata inhibited M. tuberculosis at an MIC of 125 

µg/mL. A. muricata posesses over 50 mono-THF acetogenins, which have been 
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proven to be cytotoxic against other cell lines such as U937’s, however further 

experiments need to be conducted in order to determine whether acetogenins are 

causing this cytotoxicity on Chang liver and HepG2 cells. 

 

The ethanolic and aqueous extracts of A. afra showed toxicity at concentrations 

greater than 250 µg/mL for both Chang liver and HepG2 cells. This finding is 

supported by Spies et al. (2013), who also reported an IC50 greater than 250 µg/mL. 

Spies et al. (2013) also reported the cytotoxic effects of the ethanolic and aqueous 

extracts of A. afra on HeLa and U937 cancer cell lines, with the aqueous extract 

showing no toxicity while the ethanolic extract had IC50 values of 31.88±1.09 μg/mL 

and 18.21±0.9 μg/mL against HeLa and U937 cells, respectively. The absence of 

cytotoxic effects from the ethanolic and aqueous extracts of A. afra on both the liver 

and hepatocyte cell lines is favourable as a dose of 0.2 mg/mL of the aqueous extract 

of A. afra causes ˃50% inhibition of HIV-1 reverse transcriptase, whereas a dose of 

0.075 mg/mL of the ethanolic extract of A. afra exhibits ≈50% inhibition of HIV-1 

integrase. 

 

Rifampicin is an important drug in the treatment of human mycobacterial and other 

infections. It is widely used as an essential drug in the treatment of tuberculosis and 

leprosy, in combination with other drugs (Vahdati-Mashhadian et al., 2007). The drug 

has been shown to produce hepatic toxicity in animal studies and tubulo-interstitial 

nephritis and acute renal failure is another adverse effect of the drug (Vahdati-

Mashhadian et al., 2007). The drug is also known to inhibit protein synthesis and 

induces chromosomal aberration (Vahdati-Mashhadian et al., 2007). In order to 

determine possible synergistic effects of these extracts, cytotoxicity of rifampicin on 

Chang liver and HepG2 cells was determined. Rifampicin yielded IC50 values of 57.7 

μg/mL (70 µM) and 111.1 μg/mL (135 µM) for Chang liver and HepG2 cells 

respectively. These results are similar to those presented by Vahdati-Mashhadian et 

al. 2007, where the toxic effect was evident from the concentration of 8.23 μg/mL (10 

μM) and increased in a concentration dependent manner. However, the maximum 

therapeutic plasma concentrations of rifampicin are 7-10 μg/mL, which overlaps the 

lowest toxic concentration in those experiments. IC50 values vary between experiments 

possibly due to the culture conditions or due to experimental procedure. Rifampicin 

was the only drug tested because the concentrations of nevirapine, ofloxacin, 
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streptomycin and ethambutol were too high in order to obtain cell death and required a 

high quantity of DMSO to dissolve. 

 

Using the IC25, IC50 and IC70 values for the ethanolic extract of A. muricata on the 

different cell lines and the IC25, IC50 and IC70 values obtained for rifampicin, synergistic 

and antagonistic effects could be determined. A. muricata was the only extract tested 

for synergistic effects, as it was found to be the only extract that possessed 

cytotoxicity, however the possibility of synergistic effects of the ethanolic and aqueous 

extracts of A. afra should not be disregarded. Using the combination index (CI) 

method of Chou-Talalay, as proposed by Chou, (2010), it was found that the CI for 

IC25 was 6.05 for Chang liver cells, which indicates a possible antagonistic effect when 

using rifampicin and A. muricata in combination, which could prove desirable in terms 

of toxicity as it may be possible that the extract could protect the patient from the toxic 

side effects of the drug. The IC25 for HepG2 cells was not determined. The CI for IC50 

was 1.10 and 0.71 for Chang liver and HepG2 cells respectively, which indicates a 

purely additive effect on Chang liver cells and a synergistic effect on HepG2 cells. The 

synergistic effect observed indicates that the extract could possibly enhance the toxic 

side effects of the drug, which could prove harmful to the patient, however these 

results are not an indication of the therapeutic effects that may occur.  The purely 

additive effect observed could even prove to be harmful because the patient’s liver 

could be challenged with the toxicity of the drug as well as that of the extract. The CI 

for IC70 was 0.74 and 0.079 for Chang liver and HepG2 cells respectively, which 

indicates a possible synergistic effect for both cell lines. 

 

When analysing these results, it looks promising that natural products can definitely 

play a major role in the search for novel drugs to fight TB and HIV. The ethanolic 

extract of A. muricata does prove to be cytotoxic and under certain conditions could be 

synergistic when used with rifampicin, however further testing needs to be conducted 

as there is no evidence as to what the extract is subject to in vivo and what changes 

may occur, which could lead to a less cytotoxic compound or an inactive compound all 

together. The same applies to the ethanolic and aqueous extracts of A. afra. It would 

also be beneficial to test the new found synergistic and antagonistic values on the 

actual microorganisms of M. tuberculosis and HIV in order to verify these results and 

determine whether or not the therapeutic effect will be enhanced or antagonised by 
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the combination of the extract and the drug. Isolation of the active compound is also 

important to ascertain whether the same compound is responsible for anti TB or anti-

HIV activities, cytotoxicity and synergy. 
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CHAPTER FIVE 

 

INTERACTIONS OF PLANT EXTRACTS WITH DRUG METABOLIC 

PATHWAYS 

 

5.1 INTRODUCTION 

There are more than 11 000 species of herbal plants that are used medicinally 

worldwide, most of which are often co-administered with therapeutic drugs raising the 

potential for drug herb interactions (Zhou et al., 2007). The use of medicinal plants 

against a variety of diseases is gaining popularity because of several advantages such 

as fewer side effects, better patient compliance, relatively low cost and high 

accessibility (Brown et al., 2008). Traditional herbal medicines that were formed and 

used thousands of years ago are still widely used today, especially in developing 

countries, where there is an abundance of indigenous knowledge (Brown et al., 2008).  

 

HIV/AIDS patients who make use of traditional herbal medicines may also 

simultaneously take prescription drug therapies, provided by clinics and hospitals, 

which could potentially cause drug herbal pharmacokinetic and/or pharmacodynamic 

interactions, depending on whether the drug has a narrow therapeutic index (Brown et 

al., 2008). Although the high risks associated with potential drug interactions is well 

known, 14–31% of prescription drug users combine herbal products with traditional 

medicines (Calalto et al., 2010). Due to this increased popularity and growth in sales 

of herbal medicinal products over recent years, many researchers have turned their 

focus to the pharmacological mechanisms underlying herb drug interactions (Calalto et 

al., 2010).  

 

Since the components of herbal products consumed must also be eliminated from the 

body by the same mechanism that removes drugs, there is a potential for interaction 

between herbal components and drugs (Ventkataramanan et al., 2006). Chemical 

constituents in herbal products, similar to prescription drugs, are eliminated by various 

metabolic enzymes in the body and may be substrates for various transporters. 

Possible herb drug interactions may alter drug bioavailability through altered 
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absorption, metabolism and distribution. Primary mechanisms of drug herb 

interactions involve either induction or inhibition of intestinal drug efflux pumps, such 

as P-glycoprotein (P-gp) and multiple resistance proteins (MRPs) as well as intestinal 

and hepatic metabolism by cytochrome P450s (CYPs) (Ventkataramanan et al., 2006). 

Many drug substances along with a variety of naturally occurring dietary or herbal 

components are capable of interacting with the CYP enzyme system and P-gp efflux 

pump in several ways:  

 

1. A herbal component can be a substrate of one or several isoforms of CYP enzymes 

and/or efflux systems. Therefore, one substrate can compete with another substrate 

for either metabolism by the same CYP isozyme and/or efflux system resulting in 

higher plasma concentrations due to competitive inhibition (Ventkataramanan et al., 

2006).  

 

2. A herbal constituent can also be an inducer of one or several CYP isoforms and/or 

efflux systems, thereby lowering plasma concentrations due to either higher 

metabolism and/or higher efflux. Such interactions may produce sub-therapeutic 

plasma drug concentrations (Ventkataramanan et al., 2006).  

 

3. A compound can also be an inhibitor of CYP450 enzymes resulting in reduced 

activity of one or several isoforms of CYPs. If a compound is an inhibitor of efflux 

system, it will reduce drug efflux resulting in improved absorption (Ventkataramanan et 

al., 2006).  

 

Absorption is a complex phase in pharmacokinetics and is a major determinant in drug 

efficacy and treatment outcome. The herbal interactions affecting it need to be 

considered, particularly in the case of drugs that have a narrow therapeutic index, 

such as digoxin or anti-cancer agents (Calalto, 2010). Given the increasing number of 

patients receiving multiple therapies, the FDA and European Medicines Agency (EMA) 

have recommended that pharmaceutical companies develop drug interaction 

investigations using cytochrome P450 and transporter enzymes because identifying 

possible factors and mechanisms involved with interactions related to drug absorption 

early in the development process helps to eliminate molecules with unwanted 

metabolic properties and guides medicinal chemists to produce better clinical 
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candidates and will inevitably aid the drug discovery process (Calalto, 2010). One 

major obstacle of drug absorption is intestinal metabolism. The cytochrome P450 

superfamily of enzymes on enterocytes metabolise, detoxify and bioactivate 

xenobiotics (Calalto, 2010). The most studied and abundant cytochrome is CYP3A4, 

which is located on the top of mature enterocytes and metabolises many drugs, 

(Calalto, 2010). 

 

Cytochrome activity can be drug modulated or change as a result of various 

polymorphisms. Some xenobiotics can enhance or reduce metabolism by inducing or 

inhibiting CYP activity, respectively, thereby increasing the range of variability up to 

400 fold (Calalto, 2010). Induction of these metabolic enzymes by xenobiotics 

decreases the amount of drug absorbed, leading to loss of clinical efficacy. On the 

other hand, inhibition of intestinal metabolism raises the amount of drug available 

increasing the possibility of toxicity and adverse drug reactions (Calalto, 2010). The 

P450 hydrophilic conversion of xenobiotics is followed by the chemical attachment of 

endogenous molecules, such as glucuronide, glycine, glutamine and glutathione; 

these secondary processes are mediated by phase II conjugating enzymes such as 

Glutathione-S-transferases (GST’s) and Sulfotransferases (SULT’s) (Calalto, 2010). 

 

GST’s are thought to play a physiological role in initiating the detoxification of potential 

alkylating agents including pharmacologically active compounds. These enzymes 

catalyze the reaction of such compounds with the -SH group of glutathione, thereby 

neutralizing their electrophilic sites and rendering the products more water soluble 

(Habig et al., 1974). Glutathione conjugates are thought to be metabolized further by 

cleavage of the glutamate and glycine residues, followed by acetylation of the 

resultant free amino group of the cysteinyl residue, to produce the final product, a 

mercapturic acid. The mercapturic acids are then easily excreted (Habig et al., 1974). 

 

Sulfotransferase enzymes catalyze the conjugation of sulfate groups onto a variety of 

xenobiotic and endogenous substrates that possess acceptor regions such as 

hydroxyl and amine groups (Chapman et al., 2002). The cofactor 3’-

phosphoadenosine 5’-phosphosulfate (PAPS) is required for sulfonation by these 

enzymes. Although sulfonation generally causes molecules to lose their biological 

activity, several documented examples indicate that the addition of sulfate can lead to 
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the formation of highly reactive metabolic intermediates (Chapman et al., 2002). 

Several sulfotransferase enzymes with different biochemical properties have been 

characterized in animal and human tissue. Two general classes exist in tissue 

fractions: the cytosolic enzymes, which are considered important in drug metabolism; 

and the membrane bound enzymes, which are involved in the sulfonation of 

glycosaminoglycans and glycoproteins (Chapman et al., 2002). There are currently 10 

known sulfotransferases in humans, five of which are known to be expressed in adult 

liver, namely SULT1A1, SULT1A2, SULT1A3, SULT1E and SULT2A1 (Chapman et 

al., 2002). 

 

Because the use of complementary and alternative medicines, including herbal 

medicines, is common among individuals with HIV, the possible herb drug interactions 

that may occur are relevant to this study. The use of herbal remedies complementary 

to antiretroviral (ARV) medicine may cause clinically significant interactions, especially 

because two important groups of ARVs, namely the non-nucleoside reverse 

transcriptase inhibitors and protease inhibitors are CYP substrates and have a small 

therapeutic range (Mills et al., 2005). It is expected that in Africa, where almost 80% of 

the inhabitants use traditional medicine and where the access to antiretroviral agents 

is growing, the risk for herb ARV interactions is higher (Snyman et al., 2005).   

 

Both protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors 

(NNRTIs), are mainly metabolized by CYP3A4 and, to a lesser extent, CYP2B6, 2C9, 

2C19, and 2D6 (van den Bout-van den Beukel et al., 2006). Multiple studies showed 

the existence of a number of important interaction risks of herbal medicines with 

antiretroviral agents and because many HIV patients use herbal medication in 

combination with antiretroviral therapy worldwide, more awareness and further 

research on the possible side effects and interactions that may occur are necessary 

(van den Bout-van den Beukel et al., 2006). 

 

Therefore it is of importance that potential drug herb interactions be identified in order 

to prevent adverse outcomes in patients taking combinations of drugs and herbal 

supplements (Ventkataramanan et al., 2006). Therefore, the ethanolic and aqueous 

extracts of Artemisia afra and the ethanolic extract of Annona muricata were analysed 

for Glutathione-S-Transferase inhibition as well as CYP3A4 inhibition. 
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5.2 RESULTS 

 

5.2.1 Detection of Glutathione-S-Transferase (GST) Interference 

Interruption of Glutathione-S-transferase activity was determined using the GST assay 

kit (Sigma), where the change in absorbance per minute of the extract treated GST 

samples was compared to an inhibitor and extract free control (Appendix Fig. A1). All 

experiments made use of 55 units/mg of GST, as this was found to be the optimum 

level of GST activity in order to observe a substantial interruption, if any occurred. All 

extracts were tested at 0.03125 mg/mL and 0.0625 mg/mL, because higher 

concentrations of the extracts interfered with the absorbance readings and produced 

inaccurate results. It was found, for the 0.0625 mg/mL test samples, that the ethanolic 

extract of A. muricata and the aqueous extract of A. afra had no significant effect on 

GST activity, with only 12.83% and 26.79% GST inhibition respectively. The ethanolic 

extract of A. afra however, was found to inhibit GST activity extensively, with 75.67% 

[Fig. 5.1 (B)]. When observing the tests conducted with the 0.03125 mg/mL 

concentration, the same trend was observed however with less GST disruption, where 

the ethanolic extract of A. muricata, the aqueous extract of A. afra and the ethanolic 

extract of A. afra yielded 11.16%, 19.21% and 61.44% inhibition respectively [Fig. 5.1 

(A)]. This concentration indicated that GST activity recovers in a dose dependant 

manner. 

 

Figure 5.1: Percentage inhibition of GST activity of the extract and inhibitor free control compared 

to the test samples where the various plant extracts are present. The concentration of 

the extracts used was (A) 0.03125 mg/mL and (B) 0.0625 mg/mL. Data points 

represent the mean ± SD of three determinations, representative of three independent 

experiments. 

(A) (B) 



64 

5.2.2 Detection of Cytochrome 3A4 (CYP3A4) Interference 

Susceptibility of CYP3A4 due to the presence of the ethanolic and aqueous extracts of 

A. afra and the ethanolic extract of A. muricata was determined by plotting the change 

in fluorescence per minute and determining the percentage inhibition obtained by the 

extract treated samples compared to an inhibitor and extract free control (Fig. 5.2). For 

the three tests conducted, it was found that all extracts exhibited CYP3A4 inhibition to 

some extent. The ethanolic extract of A. muricata had the highest range of CYP3A4 

inhibition, with 50% inhibition being achieved at 4.5 µg/mL and 97% inhibition being 

achieved at 500 µg/mL. The ethanolic extract of A. afra exhibited 50% inhibition of 

CYP3A4 at 25 µg/mL and 98% inhibition at 500 µg/mL. The aqueous extract of A. afra 

produced the lowest amount of CYP3A4 inhibition, however the inhibition was still 

noteworthy as 200 µg/mL exhibited 50% inhibition of CYP3A4 and 500 µg/mL 

exhibited 78% inhibition. 

 

 

Figure 5.2: Percentage inhibition of cytochrome 3A4 due to the presence of various concentrations 

of the ethanolic extract of A. muricata and the ethanolic and aqueous extracts of A. 

afra. Data points represent the mean ± SD of three determinations, representative of 

three independent experiments. 
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5.3 DISCUSSION 

It has been estimated that more than 80% of the Southern African population make 

use of traditional medicines, often in combination with prescription drugs and it is 

possible for the components of these medicinal plants to alter absorption and 

metabolism of conventional drugs leading to reduced efficacy of specific drug or 

systemic drug toxicity. Glutathione-S-transferases are thought to play a role in 

initiating detoxification of potential alkylating agents including pharmacologically active 

compounds (Habig et al., 1974). In the experiments where A. muricata and the 

aqueous extract of A. afra were present, the GST levels are reasonably similar to the 

GST control, therefore indicating that they have little effect on its activity. However, the 

ethanolic extract of A. afra, caused a drastic decrease of GST activity, indicating 

inhibition of GST activity by this extract. In all experiments, 55 units/mg of GST were 

used and the concentration of all extracts tested was 0.0625 mg/mL and 0.03125 

mg/mL, this was due to the fact that higher concentrations of the extracts interfered 

with the absorbance readings. 

 

Extracts of A. muricata and A. afra aqueous have little to no effect on GST indicating 

that their concurrent use with conventional medicines will have no effect on drug 

metabolism. This is favourable as these two extracts have shown activity against TB 

and HIV respectively (Chapter 3). The ethanolic extract of A. afra has a drastic effect 

on GST activity interfering with phase II metabolism by inhibiting glutathione 

conjugation. There is an extensive amount of phytochemicals present in A. afra and it 

is possible they are causing this disruption of GST, however further experiments need 

to be conducted to determine which compounds are responsible for this inhibition. 

The most important pathway for drug metabolism is the family of liver enzymes known 

as cytochrome P450, particularly 3A4, which is responsible for the metabolism of 

multiple drugs, including two important groups of ARVs, non-nucleoside reverse 

transcriptase inhibitors (NNRTI) and protease inhibitors (PI), which are also CYP 

substrates (Mills et al., 2005; Zhou et al., 2007; Patel et al., 2011). The activity of 

these enzymes may be induced or inhibited by the use of plant medicines (Patel et al., 

2011).  The consequences of inhibition of these CYPs by plant medicines would be 

higher antiretroviral plasma levels, thus putting patients at greater risk of serious side 

effects, whereas induction of CYP would lead to sub-therapeutic plasma levels, 
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leading to therapeutic failure and an enhanced risk of developing antiviral drug 

resistance (van den Bout-van den Beukel et al., 2006). 

 

These results indicate that all extracts, the ethanolic extract of A. muricata and the 

ethanolic and aqueous extracts of A. afra inhibit CYP3A4 activity in some way. The 

concentrations at which 50% of the enzyme was inhibited were 4.5 µg/mL, 25 µg/mL 

and 200 µg/mL respectively. These concentrations are extremely low when comparing 

them to effective dose concentrations that need to be used in order to treat TB or HIV. 

It is well known that A. muricata and A. afra possess many compounds that could 

bring about this CYP3A4 inhibition, such as certain sesquiterpenoids like 

chrysanthenyl acetate, several sesquiterpene lactones as well as non-volatile 

constituents like triterpenes, alkanes and flavonoids, and the highly active acetogenins 

like annonacin (Van Wyk, 2008; Aminimoghadamfarouj et al., 2011). However, the 

method and nature of CYP3A4 inhibition is unknown and further experiments need to 

be conducted to determine if the inhibition is due to substrate competition, substrate 

alteration or if the extracts change the surface of the actual CYP3A4 enzyme and 

affect binding in some way.   

 

These effects on GST and CYP3A4 are unfavourable due to the fact that therapeutic 

treatment will be affected in some way if these extracts are taken simultaneously with 

antiretroviral drugs and could in turn have a negative effect on the patient as opposed 

to the desired effect. However, it should be kept in mind that it is difficult to state that 

these will be the definite effects that will occur in the human body, as in vivo 

experiments may have a different outcome compared to in vitro experiments. It was 

suggested by Zhou et al. (2007) that a possible approach to overcoming unfavourable 

drug interactions with herbal remedies is to design new drugs that are so called ‘hard 

drugs’ which are not metabolized by CYPs and/or not transported by P-glycoprotein. 

These drugs cannot be metabolised and are excreted through either the bile or kidney 

with simple kinetics (Zhou et al., 2007). Thus, their pharmacokinetics will be simplified 

and usually predictable. When these drugs are administered, the potential for 

interactions with combined herbal remedies will be greatly reduced (Zhou et al., 2007). 
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CHAPTER SIX 

 

CONCLUSIONS 

 

6.1 THE RESEARCH IN PERSPECTIVE 

As a result of the increase in the spread of multidrug and extensively drug resistant 

strains of TB and the ineffectiveness of the current treatment against TB and HIV, the 

implementation of novel treatments is necessary. Due to the rich traditional values that 

Africa possesses, especially with respect to their traditional medicine and knowledge, 

many natural compounds can be identified and used to treat diseases like TB and 

HIV. The speed and accuracy of the method used to identify infection is important. At 

the start of this project, the effectiveness of two plant extracts, namely Annona 

muricata and Artemisia afra against TB and HIV was not known, and due to claims 

from traditional medicine reports which indicate effectiveness of these two plants 

against chest infections, coughing and certain antiviral properties, their potential 

activity against TB and HIV was investigated.  

 

Minimal information regarding methods for anti-TB detection have been suggested, 

thus this study set out to compare the effectiveness and sensitivity of three in vitro 

assays, namely MABA, INT and flow cytometry, for the detection of anti-TB activity of 

the plant extracts. MABA was the most sensitive and simplest assay with regards to 

plant extract testing, and was reproducible, followed by INT and flow cytometry. This is 

plausible based on the fact that MABA has been used specifically for M. tuberculosis 

testing previously whereas INT and flow cytometry have not. The results indicated 

anti-TB activity of the A. muricata ethanolic extract while both extracts of A. afra 

showed no activity. This is the first report of an A. muricata extract showing activity 

against M. tuberculosis. 

 

Due to the co-infection of many HIV infected patients with TB, it was appropriate to 

investigate whether the extracts that possessed anti-TB activity also had an effect on 

certain HIV-1 enzymes. Many publications, such as Bedoya et al., 2001; Bessong and 

Obi, 2006; Lamorde et al., 2010 and Lubbe et al., 2012 explain the effect of many 

plant extracts on HIV however the majority only focus on general HIV inhibition and 
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not on target HIV enzyme inhibition. The extract of A. muricata, which was the extract 

which possessed the highest anti-TB activity, had the least effect on HIV-1 reverse 

transcriptase but was the second most effective against HIV-1 integrase. This provides 

evidence that using this extract could possibly target HIV and TB simultaneously in 

one patient. A. afra extracts retained the highest activity against HIV, which 

unfortunately showed no activity against M. tuberculosis and thus may not combat 

both diseases however there is no interpretation of what may occur whilst the extract 

is in vivo. 

 

The objective of chapter 4 was to determine if these extracts, which now possess anti-

TB and anti-HIV activity, if administered to patients, will have any toxic effect on 

confluent Chang liver and HepG2 cells, which represent the liver in the human body 

and would be responsible for the extract detoxification process as well as the 

identification of any synergistic, antagonistic or additive effects between the extract 

and current therapeutic drugs. The MTT assay that was performed allowed for dose 

response curves to be conducted and IC50 values determined. Substantial toxicity from 

the A. muricata extract on both cell lines were found, which is unfavourable due to its 

anti-TB activity, which indicated that the liver may become damaged if the extract is 

taken in high doses. The extracts of A. afra exhibited no toxicity on the respective cell 

lines, which indicates high levels of the extract may possibly be taken and should not 

have any negative effect on the liver, however it should be noted that there is no 

interpretation of what may occur in vivo in a human host. In terms of combination 

experiments, only the extract of A. muricata was examined, but the A. afra extracts 

should not be excluded and it is encouraged that they should also be tested to 

determine if any synergistic, antagonistic or additive effects may occur. The results 

revealed that the IC values at which the extracts and the antibiotics are used are very 

important as there was a large difference in the combination effect at the various IC 

values. Only the combination index for the IC25  for Chang liver cells yielded an 

antagonistic result, while the remaining yielded synergistic effects on both Chang liver 

and HepG2 cells. These synergistic effects are unfavourable and indicate that the 

extract may cause unwanted enhanced toxicity of the rifampicin, the specific drug in 

this case, whereas the antagonistic result proves positive for possibly protecting the 

patient in respect to the drug’s toxic side effects. This is an interesting finding which 

may impact on future in vitro and in vivo experiments. 
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The observation of synergistic effects that may take place between the extract and the 

therapeutic drugs, implied that it was plausible to investigate whether any drug 

interactions could occur, based on the major drug metabolizing enzymes, such as the 

CYP3A4 and GST enzymes. These drug interactions aid in understanding whether the 

extracts had an effect on the vital enzymes responsible for detoxifying therapeutic 

drugs and thus giving insight into whether the extracts may affect the course of drug 

metabolism in some way and thus the treatment of these diseases. Only the ethanolic 

extract of A. afra had a significant effect on GST, while the other extracts showed no 

major effect. Investigation of the most important enzymes involved in metabolizing the 

majority of drugs, CYP3A4, showed interference from all extracts. This implies that the 

extracts may affect the drug metabolizing pathway where CYP3A4 is dominant, which 

may impede treatment of patients. 

 

6.2 POTENTIAL FOR FUTURE DEVELPOMENT OF THE WORK 

As natural sources are becoming increasingly popular as sources of anti-TB and anti-

HIV agents, the need for determining whether they are safe and whether they can be 

used in conjunction with modern day therapeutic drugs also increases. There are 

various aspects in this project that can be reviewed and built on for future work. Anti-

TB research is fundamental in South Africa, thus it could be useful to compare other 

methods of detection with the methods mentioned in this project in order to provide a 

broader comparison with regards to the most sensitive, cheapest and effective method 

for determination of anti-TB activity. Due to the presence of anti-TB activity in the 

ethanolic extract of A. muricata it might be valuable to ascertain which compound is 

responsible for inhibition of M. tuberculosis and the mode of action, whether it might 

target the mycolic acids present in the cell wall or target specific enzymes or inhibit 

DNA or protein synthesis of M. tuberculosis. It may also be interesting to determine 

whether the compound identified in A. muricata has the same effect on different 

species of mycobacteria, such M. aurum, M. avium and M. smegmatis as well as on 

resistant strains such as multi drug resistant (MDR) and extensively drug resistant 

(XDR) M. tuberculosis. 

 

For the detection of anti-HIV activity, the focus was on the enzymes reverse 

transcriptase and integrase because they are involved in the process of replication of 

HIV, therefore inhibition of either or both enzymes would be beneficial. For the 
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detection of integrase inhibition, a larger range of concentrations were used for each 

extract when compared to the range used to detect reverse transcriptase inhibition. 

Lower concentrations of the various extracts, mainly the aqueous extract of A. afra 

should be used to determine at which concentration the inhibition of HIV-1 reverse 

transcriptase is halted. The inhibition of HIV-1 integrase by A. afra and A. muricata has 

not been previously documented. It would be beneficial to investigate which 

phytochemical(s) are being produced from each of these plants, that are responsible 

for this activity against HIV-1 integrase and to establish whether the active chemicals 

are similar. Testing these extracts on other enzymes which are active in the HIV-1 life 

cycle would also prove valuable, such as that of the protease enzyme and determine if 

phytochemicals are acting in the same manner with each different enzyme or if each 

mode of inhibition varies. 

 

The cytotoxicity testing was conducted on two different cell lines, Chang liver and 

HepG2 cells, therefore it would be valuable if the extracts were tested on other cell 

lines, such as the Vero and RAW cell lines, which are representative kidney cells and 

macrophage cells respectively. Testing the extracts on these particular cells could 

provide insight into whether they are toxic to the kidney cells, which could prove 

detrimental as some of the extract will be excreted through the urine, or toxic to the 

macrophage cells, which may aid anti-TB detection as the macrophage cells would 

lyse, exposing the latent TB cells and make them vulnerable to treatment. Different 

cell viability assays could be used, however MTT has been proven to be the easiest, 

effective and the most sensitive. The synergistic experiments were only conducted 

with rifampicin as this was the only drug that could be dissolved in a low concentration 

of DMSO and still have an IC50 value on both cell lines, thus testing other anti-TB and 

anti-HIV drugs would be beneficial to determine if these specific extracts have any 

combinational effect when used with those therapeutic drugs. It would also be 

interesting to test the new found synergistic and antagonistic values on the actual 

microorganisms of M. tuberculosis and HIV in order to verify these results and 

determine whether or not the therapeutic effect will be enhanced or antagonised by 

the combination of the extract and the drug. It would also be interesting to ascertain 

whether the same compound is responsible for inhibitory activity, cytotoxicity and 

synergistic effects.  
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With regards to drug interactions, there are many enzymes involved in phase one and 

phase two metabolism, such as sulfotransferases, Uridine diphosphate 

glucuronosyltransferases and P-glycoproteins, and other cytochrome P450’s. It would 

be valuable to understand all aspects of drug interactions that may occur with these 

extracts, as they play a vital role in establishing whether a novel drug is accepted for 

trials or not. It would be important to test the effect of these extracts on 

sulfotransferase activity especially because sulfotransferases have been implicated in 

numerous detoxification and bioactivation pathways, however, little is known regarding 

its endogenous function (Frame et al., 2000).  

 

It should be noted that although these studies look promising, the human system is 

complicated and it is difficult to ascertain whether observations made in vitro will be 

the same as in vivo, therefore in vivo studies would be necessary to conclude as to 

whether the extracts undergo some kind of change when entering the stomach, 

passing through the colon and inevitably whether they would have the same effect on 

the TB and HIV diseases in the human host. 
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APPENDIX 

 
Table A1: Average absorbance values for the growth control and test samples with the 

corresponding percentage inhibition for each of the drugs tested and plant extract, A. 

muricata. 

 

Antibiotic 

Growth Control 
Average (nm) 

Test Average 
(nm) 

Percentage 
Inhibition  

Rifampicin 23398.86 5642.14 75.89 

Ofloxacin 25593.86 2148.14 91.61 

Isoniazid 25965.43 2325.29 91.04 

Ethambutol 24986.71 1966.00 92.13 

Streptomycin 23795.57 1960.14 91.76 

Plant - Annona muricata 23593.71 4334.29 81.63 

 
 

Table A2: Various concentrations of ethambutol and Annona muricata with the corresponding X 

– Mean Fluorescence and percentage inhibition values obtained for the antibiotic 

tested M. tuberculosis cells and for the extract treated cells. 

 

Concentration 
of Ethambutol 

(μg/mL) 

Ethambutol X - 
Mean 

Fluorescence 

Percentage 
Inhibition 

 Concentration 
of Annona 
muricata 
(μg/mL) 

Annona 
muricata X - 

Mean 
Fluorescence 

Percentage 
Inhibition 

0 23.9 0.00  0 23.1 0.00 

15 6.19 74.10  500 9.9 56.97 

7.5 7.72 67.70  250 13.1 42.91 

3.75 8.26 65.44  125 13.9 39.94 

1.875 8.32 65.19  62.5 15.5 32.69 

0.938 8.86 62.93  31.25 19.4 16.04 

0.469 11.6 51.46  

0.234 14.2 40.59  

0.117 15.7 34.31  

0.059 16.4 31.38  

 

 

 

 

 

 

 

 

 

 

 

 



 

Table A3: Two way analysis of variance (ANOVA) followed by Tukey’s HSD test was applied for 

statistical analysis with the level of significance set at P < 0.05 was conducted 

utilising MABA, Flow Cytometry and INT results to determine if the results obtained 

are significantly different from one another. 

 

 
{1} {2} {3} {4} {5} {6} 

Assay M=92.12 M=81.03 M=71.49 M=84.51 M=87.28 M=84.82 

MABA Control {1} 
 

0.0004 0.0001 0.0229 0.3026 0.0321 

MABA Plant {2} 0.0004 
 

0.0024 0.6527 0.0924 0.5663 

Flow Cytometry Control {3} 0.0001 0.0024 
 

0.0001 0.0001 0.0001 

Flow Cytometry Plant {4} 0.0229 0.6527 0.0001 
 

0.8266 1.0000 

INT Control {5} 0.3026 0.0924 0.0001 0.8266 
 

0.8869 

INT Plant {6} 0.0321 0.5663 0.0001 1.0000 0.8869 
 *M = Mean 

 *Red indicates statistical significance at the 5% level (p<0.05) 

 

 

 

 

Figure A1: GST activity, expressed in change in absorbance per minute, with no extracts or 

inhibitor present compared to GST activity with the various plant extracts present. 

Data points represent the mean ± SD of three determinations, representative of three 

independent experiments. 
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