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Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and
in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging
evidence for their excellent antitumor activities. However, some problems such as poor
solubility, toxicity and controversial mechanisms of action hamper their use as effective
antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic,
researchers have recently developed novel therapeutic approaches including
developing novel derivatives, manufacturing novel nano-formulations, and combining
ARTs with other drugs for cancer therapy. The related mechanisms of action were
explored. This review describes ARTs used to induce non-apoptotic cell death containing
oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on
cancer metabolism, immunosuppression and cancer stem cells and discusses clinical
trials of ARTs used to treat cancer. The review provides additional insight into the
molecular mechanism of action of ARTs and their considerable clinical potential.
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INTRODUCTION

Cancer is becoming a severe health problem internationally and is one of the most deadly diseases
(Siegel et al., 2016). Conventional cancer therapy, especially chemotherapy, provides limited efficacy
by DNA damage (Li et al., 2017), but has the problems of formidable side effects and drug resistance.
To discover novel potent and safe chemotherapeutic agents or seek better curative methods,
medicinal chemists, pharmaceutists and pharmacologists have completed many investigations.
Abbreviations: Akt, protein kinase B; Bak, Bcl-2 homologous antagonist/killer; Bcl-2, B cell lymphoma-2; Bax, Bcl-2–
associated X protein; PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian target of rapamycin; LC3, light chain 3;
CaMKK2, Ca2+/calmodulin-dependent kinase kinase 2; ULK1, unc-51 like autophagy activating kinase 1; PI3KC3, class III
phosphatidylinositol 3-kinase; T-bet, T-box expressed in T cells; MEK, MAPK - mitogen activated protein kinase; ERK,
extracellular signal-regulated kinase; Nrf-2, nuclear factor (erythroid‐derived 2)‐like 2; VEGF, vascular endothelial growth
factor; JNK, c-Jun-N-terminal kinase; g-H2AX, phosphorylated histone H2AX; DSB, double-strand break; IFI 16, Interferon-
inducible 16; IL, interleukin; ATF4, activating transcription factor 4; CHOP, C/EBP homologous protein; CHAC1, cation
transport regulator-like protein 1; ALDH1, aldehyde dehydrogenase-1.
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Artemisinin (ART), bearing a peroxide bridge in its
sesquiterpene lactone structure, was extracted and separated
from Artemisia annua L. (sweet wormwood), which has been
used for treatment of fevers and chills as one of the famous
Chinese traditional medicines for thousands of years (Klayman,
1985; Li and Wu, 2003; Cui and Su, 2009; Tu, 2016). ART can be
reduced to dihydroartemisinin (DHA) by using sodium
borohydride in high yields. Thus, this compound was used as a
starting material to prepare the first-generation derivatives
including artemether (ARM) and arteether (ARE), and sodium
artesunate (ARS) as well as sodium artelinate (ARL) collectively
termed as artemisinins (ARTs) (Figure 1). As first-line
antimalarial medicines, ARTs are safe, low-toxic and well
tolerable. However, the neurotoxicity has raised concerns about
the safety of ARTs. One of them, ARL was withdrawn from
further drug development program because of higher
neurotoxicity (Li et al., 2005; Xie et al., 2005). Recently,
extensive anticancer effects of ARTs were reported (Ho et al.,
2014; Liu X. et al., 2019). More importantly, ARTs have been
attractive cancer therapeutic drug candidates with high
selectivity, while the neurotoxicity occurred inescapably in
clinical studies of cancer at high dosage (Deeken et al., 2018;
Von Hagens et al., 2019). Furthermore, the poor solubility of
ARTs as well as a short half-life and low bioavailability upon oral
administration lead to urgent needs for the finding of novel
chemical structures to solve these problems (Crespo-Ortiz and
Wei, 2012; Li et al., 2016). To overcome these drawbacks, some
novel chemical structures of ARTs have been developed as cancer
candidates including mitochondria-targeted derivatives and
hybrids while new therapeutic approaches of novel nano-
formulations and combination therapy were explored as well
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(Zhang X. et al., 2015; Zhang et al., 2016; Gao et al., 2018;
Suraweera et al., 2018; Hu et al., 2019; Nosrati et al., 2019; Wang
Y. et al., 2019; Fröhlich et al., 2020; Zhang et al., 2020).

In addition, the mechanisms of antitumor action are
investigated but incompletely elucidated. The mechanism
of antitumor action of ARTs mainly involved in apoptotic
cell death which has been confirmed by most literatures.
Recognized endoperoxide bridge pharmacophore could be
reduced by heme or free ferrous iron to generate carbon free
radical and reactive oxygen species (ROS) (Firestone and Sundar,
2009; Stockwin et al., 2009; Greenshields et al., 2019). Excess
production of ROS is known to cause apoptotic cell death.
However, new mechanisms of action in antitumor activity of
ARTs by affecting non-apoptotic cell death including oncosis,
autophagy and ferroptosis were also found (Du et al., 2010; Zhou
et al., 2013; Ooko et al., 2015; Shi et al., 2017; Jiang et al., 2018).
Other multiple hallmark events of cancer development and
progression were also affected by ARTs including the
suppression of cancer cell proliferation, anti-angiogenesis, anti-
cancer metastasis and invasion, induction of cell cycle arrest,
disruption of cancer signaling pathway and regulation of tumor
microenvironment (Efferth, 2017b; Zhang Y. et al., 2018). In
tumor microenvironment, there are four types of cells that
inhibit immune function including regulatory T cells (Tregs),
myeloid-derived suppressor cells (MDSCs), tumor-associated
macrophages and cancer-associated fibroblasts. As a result,
tumor-specific T cells are unable to enter tumor tissues or
their functions are impaired after entering the tissues. This
indicates that inhibiting immunosuppression will be beneficial
for cancer therapy. Furthermore, it is well-known that cancer
cells are different from normal cells with rapid proliferation
FIGURE 1 | Artemisinin and its derivatives.
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and metabolic changes especially glycolytic metabolism.
Fortunately, ARTs showed antitumor activity by affecting
immunosuppression and cancer metabolism (Zhang et al.,
2014; Cui et al., 2015; Li S. et al., 2019; Zhu et al., 2019; Gao
et al., 2020). The pace on the study of mechanisms of action of
ARTs still doesn’t stop after receiving these exciting results.
Cancer stem cells (CSCs) attract the attention of researchers of
ARTs because of their crucial role on tumor occurrence,
metastasis and recurrence. Although only a few articles about
how ARTs affect CSCs have been reported (Cao et al., 2014; Berte
et al., 2016; Tong et al., 2016), these new discoveries might
provide a revolutionary approach for cancer therapy.

In this review, recent progress for cancer therapy based on
ARTs including the development of novel ARTs derivatives,
novel nano-formulations and combination therapy is
summarized and the latest findings of the mechanisms of
action are analyzed for further understanding this huge
potential in cancer treatment and promoting clinical application.
NOVEL DESIGN STRATEGIES FOR
DEVELOPING ANTICANCER CANDIDATES
BASED ON ARTS

The antitumor activity of ARTs has attracted extensive attention
(Firestone and Sundar, 2009; Crespo-Ortiz and Wei, 2012;
Frohlich et al., 2016; Wong et al., 2017; Zhang Y. et al., 2018;
Liu X. et al., 2019). To increase efficacy and reduce toxicity of
ARTs, new design strategies for anticancer candidates based on
ARTs have been developed. These strategies were raised by
researchers from different fields. Medicinal chemists focus more
on chemical structural modification to develop novel derivatives
whereas pharmacists are more interested in formulation
improvement. In our review, we elaborate these novel strategies
by focusing on developing novel ART derivatives and
manufacturing ART nano-formulations as well as combining
ARTs with other drugs for cancer therapy.

Developing Novel Derivatives With
Enhanced Antitumor Activity
Mitochondria-Targeted ART Derivatives
Mitochondria are highly dynamic organelles involved in many
cellular functions (Battogtokh et al., 2018). Mitochondria
dysfunction has been observed in cancer cells (Gururaja Rao,
2017). Drugs specifically targeting mitochondria are therefore of
therapeutic interest. Furthermore, current evidence of the
mitochondrial membrane potential (Dym) difference between
normal and cancer cells has offered further confidence for
designing drug to target mitochondria (Zielonka et al., 2017).
The triphenylphosphonium cation (TPP+), one of delocalized
lipophilic cations (DLCs) is used commonly to target parental
compounds to the mitochondria (Ye et al., 2017; Jin et al., 2019).
Mitochondria-targeted ART derivatives with enhanced antitumor
activity have been synthesized as antitumor candidates (Figure 2).
Zhang et al. synthesized a mitochondria-targeting ART analogue
(ART-TPP) with enhanced anticancer activity to tested cancer
Frontiers in Pharmacology | www.frontiersin.org 3
cells, with the minimum IC50 value of 0.82 mM for HeLa cells and
the maximum IC50 value of 6.13 mM for SKBR3 cells. The
cytotoxicity of ART-TPP was more potent than ART alone in
tested cells. The principle for the better activity of ART-TPP was
confirmed by using a clickable probe. The probe localized well in
the mitochondria after cellular uptake and bound to 209 proteins
from mitochondria with more potential (Zhang et al., 2016). Sun
et al. conjugated ARL to mitochondria-targeting TPP+ to obtain
ARL-TPP. ARL-TPP significantly increased cytotoxic activity
against MCF-7 cancer cells with an IC50 value of 6.87 mM,
PANC-1 cancer cells with an IC50 value of 6.64 mM, HepG2
cancer cells with an IC50 value of 2.69 mM and LoVo cancer cells
with an IC50 value of 2.73 mM (Sun et al., 2017). However, because
TPP+ are nonemissive, Zhang et al. synthesized another novel class
of fluorescent mitochondria-targeted coumarin–artemisinin
conjugates to kill cancer cells by linking a mitochondrial dye,
coumarin-3-carboximide with ART. These compounds had strong
abilities to accumulate in mitochondria with enhanced anticancer
activities, then the intracellular ROS levels increased efficiently and
cell apoptosis was induced (Zhang X. et al., 2015). Feng et al.
synthesized ART and aggregation-induced emission fluorogens
(AIEgen) conjugates (TPETH-Mito-1ART and TPETH-Mito-
2ART) for mitochondria-targeted and image-guided chemo- and
photodynamic therapy for treating cancer. These conjugates largely
improved cancer cell ablation efficacy with a synergistic effect by
quickly depolarizing mitochondrial membrane and dramatically
reducing cancer migration activity (Feng et al., 2018).

Hybrid Derivatives
Pharmacophore hybridization, a classical medicinal chemistry
approach, involves combination of two or more functional
groups via covalent bonds to produce a novel compound
holding preferable biological activities (Meunier, 2008; Muregi
and Ishih, 2010; Capci et al., 2019). This approach is often used
in searching for safe, effective and specific innovative medicines
for cancer therapy (Letis et al., 2017; Yu et al., 2018; Zborovskii
et al., 2018). Many studies of ARTs have generated new hybrids,
such as ART-derivative-N-heterocyclic carbene (NHC)-gold(I)-
hybrids (Zhang et al., 2020), ART–daumone hybrids (Ma et al.,
2018), DHA–bile acid hybrids (Letis et al., 2017; Marchesi et al.,
2019), DHA–cinnamic acid hybrids (Xu et al., 2016), DHA–
coumarin hybrids (Yu et al., 2018) and ART–chemotherapeutic
agent conjugates (Li et al., 2016), et al., with more potent activity
than with either agent alone (Table 1). We designed and
synthesized DHA–cinnamic acid ester derivatives modified at
two positions, C-9 and C-12. DHA-37 (namely, compound 17
in previous paper) was considered a candidate for treating lung
cancer (Xu et al., 2016). Liu et al. found that DHA-37, different
from DHA-induced apoptosis, increased the high mobility
group box 1 (HMGB1) expression and induced autophagy by
activating the MAPK signal but not PI3K-AKT-mTOR pathway
(Liu et al., 2018). Zhang et al. synthesized ART-derivative-
NHC-gold(I) hybrids which showed strong anticancer
activities on a large panel of representative human cancer cell
models with GI50 values in nanomolar (nM) range together with
a high selectivity. This high selectivity might be due to
inhibition of the redox antioxidant Nrf2 transcription factor.
October 2020 | Volume 11 | Article 529881
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This transcript factor has been confirmed to be strongly
associated with aggressiveness and resistance to cancer
therapies (Zhang et al., 2020). Ma et al. found that ART–
daumone hybrids inhibited cancer cell-mediated osteolysis by
upregulating the level of activating transcription factor 3 and
downregulating the level of E2F transcription factor 1 and
hepatocyte nuclear factor 4 alpha (Ma et al., 2018). Li et al.
Frontiers in Pharmacology | www.frontiersin.org 4
found that ART-chemotherapeutic conjugates inhibited the
growth and proliferation of ovarian cancer cells, resulting in
S-phase arrest, apoptosis and epithelial mesenchymal transition
(EMT) (Li et al., 2016). Furthermore, Yu et al. found that DHA-
coumarin hybrids induced ferroptosis, promoted apoptosis,
arrested the cell cycle progression, inhibited cell proliferation
and migration (Yu et al., 2018).
FIGURE 2 | Novel mitochondria-targeted artemisinin derivatives.
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Manufacturing Novel Nano-Formulations
With Better Physicochemical Properties
Nano-formulations can achieve a drug-targeted distribution and
increase the bioavailability of the drug to improve the curative
efficacy, which is a key technology in targeted cancer therapy. To
improve physicochemical properties of ARTs, researchers have
developed ART-based nano-formulations such as liposomes
(Gharib et al., 2014; Leto et al., 2016; Gao et al., 2018; Li H.
et al., 2019; Liu J. J. et al., 2019), nanostructured lipid carriers
(Emami et al., 2018), micelles (Nosrati et al., 2019; Wang Y. et al.,
2019), nanospheres (Chen J. et al., 2015), nanocapsules (Meng
et al., 2014; Tran et al., 2015) and multifunctional nanoparticles
(Chen et al., 2014; Li et al., 2014; Wang et al., 2016a; Wang et al.,
2016b; Pan et al., 2018) (Table 2). These nano-formulations
overcame chemotherapeutic resistance with improved selectivity
by targeting tumor cells. These novel nano-formulations
according to the different design concepts and different
delivery systems are summarized below.

Based on a Fe2+/Fe3+-mediated Fenton reaction, magnetic DHA
nanoliposomes were developed to circumvent cisplatin resistance
and enhance targeted delivery and bioefficacy of DHA (Gao et al.,
2018; Li H. et al., 2019). Based on transferrin overexpression in
tumor cells, magnetic nanoliposomes and transferrin-conjugated
liposomes were developed to target tumor in vitro and in vivo
(Gharib et al., 2014; Leto et al., 2016). Also, ART-loaded
transferrin-conjugated nanostructured lipid carriers were
developed to increase water solubility, site specificity, selective
targeting, efficient penetration, glioma cell distribution and
internalization, as well as effective delivery across the blood–
brain barrier with much lower drug concentration, greater
therapeutic effect and decreased likelihood of neurotoxicity
(Emami et al., 2018).

On the basis of pH-responsive degradation, novel Fe3O4@C@
MIL-100(Fe) nanoparticles (Wang et al., 2016a), dual metal-
organic-frameworks nanoparticles (Wang et al., 2016b), lipid
Frontiers in Pharmacology | www.frontiersin.org 5
nanoparticles (Zhang Y. J. et al., 2015), multifunctional
nanocarriers (Chen et al., 2014), nanospheres (Chen J. et al.,
2015), fluorescent magnet theranostic nanoparticles
(Pan et al., 2018) and polymeric micelles (Hao et al., 2020)
loading ARTs were fabricated. These nano-formulations possessed
pH-responsive property since they relied on acidified tumor
microenvironment along with a further acidified endosome/
lysosome network. Once these nano-formulations were
endocytosized into tumor, they controllably released
incorporated drugs to take effect, or Fe2+ ions or Mn2+ ions,
which converted ARTs to highly active products to enhance
cell killing.

In addition, arginine 8 modified DHA-epirubicin liposomes
were developed with ideal physicochemical characteristics for
powerful cytotoxicity against A549 cells and these liposomes
effectively suppressed vasculogenic mimicry (VM) channels and
blocked tumor metastasis (Liu J. J. et al., 2019). mPEG–ART
nanocapsules were synthesized based on a mPEGylated ARS pro-
drug but conferred decreased cytotoxicity than free ARS (Meng
et al., 2014). Fortunately, ARS-loaded chitosan-coated lipid
nanocapsules were developed with stronger antitumor activity
than free ART (Tran et al., 2015). Doxorubicin and DHA co-
loaded Soluplus®-TPGS and biotin-functionalized copolymeric
PEG-PCL micelles were developed with higher antitumor
activity and lower toxicity (Nosrati et al., 2019; Wang Y. et al.,
2019). These newly developed nano-formulations provided novel
therapeutic candidates with high efficiency for treating cancer.

Combination Therapy
Combination therapy approach can be used to increase efficacy,
reduce toxicity and overcome drug resistance (Suraweera et al.,
2018). Resistance to ARTs has already appeared in malaria
treatment. New partner drugs of ARTs have been suggested to
establish combination-treatment regimen for antimalaria to reduce
resistance risk (Wang J. et al., 2019). Successful combinations of
TABLE 1 | Summary of ARTs hybrids for antitumor activity.

Compound Cell line Event/Mechanism References

ART-derivative-NHC
gold(I) hybrids

A549, U-2 OS, MCF-7, T24,
LAMA, HL-60, HepG2

Inhibit Nrf2 transcriptional activity (Zhang et al., 2020)

ART-daumone hybrids MDA-MB-231, A549 Tumor suppressive activating transcription factor 3↑, oncogenic E2F transcription
factor 1↓, inhibit osteoclast formation, MMP 9↓, cathepsin K↓

(Ma et al., 2018)

DHA-bile acid hybrids HL-60, HepG2, Induce apoptosis (Marchesi et al., 2019)
CCRF-CEM, CEM/ADR5000 Enhance cytotoxicity, low cross resistance (Letis et al., 2017)

DHA-cinnamic acid
hybrids

A549 HMGB1↑, induce autophagy by activating MAPK signals (Liu et al., 2018)

DHA-coumarin hybrids HT-29, MDA-MB-231 Inhibit proliferation, arrest the cell cycle progression, induce both apoptosis and
ferroptosis, inhibit migration

(Yu et al., 2018)

ART-chemotherapeutic
agents conjugates

A2780, OVCAR-3 S-phase arrest, induce apoptosis and inhibit migration (Li et al., 2016)

Thymoquinone-ART
hybrids

CCRF-CEM, CEM/ADR5000 Better cytotoxicity than doxorubicin (Fröhlich et al., 2018)

HCT116, HT29 ROS↑, g-H2AX↑ (Fröhlich et al., 2017)
ART-triazole hybrids KB, HepG2 Exihibit moderate to good cytotoxic activities (Tien et al., 2016)
ART-indole/imidazole
hybrids

A549, MCF-7, HepG2, MDA-
MB-231, MCF/ADR

Induce cell cycle arrest at G2 phase (Hu et al., 2019)

ART-ferrocene hybrids CCRF-CEM, CEM/ADR5000 Show a remarkable anticancer activity (Reiter et al., 2015)
Tamoxifen/Estrogen-
ART hybrids

PC-3, MCF-7 Enhance anticancer activity (Fröhlich et al., 2020)
October 2020 | Volu
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ARTs with chemotherapeutics or phytochemicals have been
highlighted in recent years (Table 3). These findings provided
promising therapeutic approaches for cancer therapy.

Multiple mechanisms were found in these combinations. The
in vivo and in vitro applications of DHA–cisplatin combinations
were mainly mediated by inhibiting mTOR (Feng et al., 2014),
reducing tumor microvessel density (Zhang et al., 2013) and
inhibiting tumor growth and metastasis (Zhou et al., 2010).
However, ARS–cisplatin combination was mediated by
downregulating RAD51 (Wang et al., 2015). DHA–carboplatin
combination was mediated by the mitochondrion and death
receptor-mediated caspase-dependent apoptotic pathway (Chen
et al., 2009) and p38 mitogen-activated protein kinase (MAPK)
activation (Zhang B. et al., 2018). Combinations with the
antimetabolite 5-fluorouracil involved ROS (Yao et al., 2018),
whereas that with gemcitabine was regulated by the Fas-caspase-
8–mediated extrinsic pathway and Bak-mediated intrinsic
pathway (Zhao et al., 2014), deactivating gemcitabine-induced
NF-kB activation (Wang et al., 2010) or promoting apoptosis via
the Akt/mTOR/signal transducer and activator of transcription 3
(STAT3) pathway (Hong et al., 2017). In vivo, Combinations of
ARS or DHA with cytarabine produced initial regression but did
not prolong survival (Drenberg et al., 2016). Of note, synergy
between kinase inhibitors and DHA or ARS involve different
mechanisms from those mentioned above, including repressing
myeloid cell leukemia 1 (MCL-1) expression (Budhraja et al., 2017;
Yan et al., 2018), inhibiting STAT3 activity (Jin et al., 2017; Yan
et al., 2018), activating epidermal growth factor receptor (EGFR)
(Efferth et al., 2004; Efferth, 2017a) and inducing ferroptosis (Li
et al., 2020). DHA–curcumin combination decreased the
expression of oncogene midkine and upregulated the expression
of the microRNAmiR-124 to induce apoptosis (Zhao et al., 2017).
However, the ART–curcumin combination prolonged the life
span and restored locomotor activity via ROS mediated in
Drosophila in brain tumor (Das et al., 2014). In addition, ARS-
triptolide combination inhibited pancreatic cancer cell line growth
Frontiers in Pharmacology | www.frontiersin.org 6
and induced apoptosis, accompanying downregulation of the
expression of heat shock proteins (HSP) 20 and HSP 27 (Liu
and Cui, 2013). DHA-dictamnine combination dramatically
increased apoptotic cell death via a caspase dependent pathway
in human lung adenocarcinoma cells (An et al., 2013).

Overcoming drug resistance using combinations of ARTs with
other drugs is another advantage for cancer therapy. Chen et al.
reported that DHA treatment overcame dexamethasone resistance
and enhanced dexamethasone efficacy in multiple myeloma by
increasing ROS production and cytochrome C translocation from
mitochondria to cytoplasm, resulting in alterations to Dym and
caspase-mediated apoptosis (Chen Y. et al., 2020). Yao et al.
reported that DHA effectively restored anticancer activity of 5-
FU against 5-FU resistant HCT116 TP53-/- cells through ROS-
mediated apoptosis and upregulation of the bcl-2/bax expression
ratio (Yao et al., 2018). Nunes et al. reported that combination of
ARS and bicalutamide restored sensitivity of castrate-resistant
prostate cancer cells to antiandrogens. The mechanisms involved
in inhibiting NF-kB signaling, together with decreased expression
of androgen receptor (AR) and/or AR-variant 7 and the induction
of oxidative stress and apoptosis (Nunes et al., 2017). Mutant p53
(R248Q) can induce doxorubicin resistance in hepatocellular
carcinoma (HCC). Yang et al. reported that DHA sensitized
mutant p53 (R248Q)-expressing HCC to doxorubicin. The
mechanism of action involved in reducing P-gp expression via
inhibiting the p53 (R248Q)-ERK1/2-NF-kB signaling pathway
(Yang et al., 2019). It is well known that treatment of arsenic
trioxide to lung cancer cells easily developed high level of
resistance (Chen H. et al., 2017). Chen et al. reported that
combination of DHA and arsenic trioxide reduced arsenic
trioxide resistance of lung cancer cells by increasing cellular level
of ROS and DNA damage. Moreover, treatment of normal human
cells with the combination did not result in significant adverse
events (Chen H. et al., 2017).

In conclusion, these novel combination approaches based on
ARTs improved the antitumor activity and led to the development
TABLE 2 | Summary of ART-based nano-formulations.

Nano-formations Cell line Event/mechanism References

Liposomes A549/R Increase intracellular ROS generation and cell apoptosis rate (Gao et al., 2018)
MCF-7, MDA-MB-231 High antiproliferative activity in a magnetic field (Gharib et al., 2014)
HCT-8 Enhance anticancer activity (Leto et al., 2016)
HNSCC Enhance anticancer activity by increasing DHA-targeted delivery and biocompatibility (Li H. et al., 2019)
NSCLC VE-Cad↓, TGF-b1↓, MMP-2↓, HIF-1a↓, inhibit VM channels and tumor metastasis, increase the

selective accumulation at tumor sites
(Liu J. J. et al., 2019)

Nanostructured lipid
carriers

U87MG Enhance anticancer activity (Emami et al., 2018)

Micelles MCF-7, MCF-7/ADR Enhance antitumor activity and reduce toxicity (Wang Y. et al., 2019)
MCF-7, 4T1 High efficacy, low toxicity and tumor target (Nosrati et al., 2019)
CT-26 Enhance antitumor activity (Hao et al., 2020)

Nanospheres A549 Suppress tumor growth (Chen J. et al., 2015)
Nanocapsules L1210 and MCF-7 Decrease antitumor activity by controllable release of ART (Meng et al., 2014)

MCF-7, MDA-MB-231 Enhance anticancer activity (Tran et al., 2015)
Multifunctional
nanoparticles

HeLa Enhance antitumor efficacy (Chen et al., 2014)

HeLa, A549 Significant cytotoxicity and no obvious side effects (Wang et al., 2016a)
HeLa Synergy with combined chemo-photothermal therapy (Wang et al., 2016b)
HeLa, A375, HepG2 Enhance antiproliferative response compared with free drug (Pan et al., 2018)
C6, C6 stem cell Destroy VM channels and induce apoptosis (Li et al., 2014)
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of new drug partners for clinical application. Furthermore, several
newly developed candidates also presented new mechanisms of
action including in autophagy (Liu et al., 2018), in ferroptosis (Yu
et al., 2018) and in Nrf2 signaling (Zhang et al., 2020), which
warrant to be noted.
THE EFFECTS OF ARTS ON CELL
SIGNALING PATHWAYS AND MODES
OF INDUCTION OF CELL DEATH

The antitumor activity of ARTs involves multitargets and
multipathways as mentioned above. Inducing cell cycle arrest
is one of some common ones to inhibit proliferation of tumor
cells (Jia et al., 2016; Chen J. et al., 2019), inhibit tumor cell
invasion and metastasis (Rasheed et al., 2010; Weifeng et al.,
2011), exerting antiangiogenic effects against tumor cells (Wei
and Liu, 2017) and inducing cancer cell apoptosis (Jia et al.,
2016; Chen J. et al., 2019). More recently, several new
mechanisms on non-apoptotic cell death e.g. oncosis,
autophagy and ferroptosis have been proposed. As shown in
Frontiers in Pharmacology | www.frontiersin.org 7
Figure 3, the mechanisms of action involve multiple cell
signaling pathways. Besides, reports showed that ARTs
regulated cancer cell metabolism including glucose metabolism
and lipid metabolism, inhibited immunosuppression and the
stemness of cancer stem cells in various cancer cell lines (Chen
X. et al., 2017; Cao et al., 2019; Chen X. et al., 2019; Chen S. et al.,
2020; Gao et al., 2020). These new findings further highlight the
multitarget bioactive properties and complexity of the ART-
mediated anticancer effect.

The Effects of ARTs on Non-Apoptotic
Cell Death
Oncosis
Oncosis is characterized by rapid cell swelling, organelle swelling,
membrane permeability, and cell lysis. It is associated with
intercellular events including increased ROS generation,
mitochondrial swelling, adenosine triphosphate (ATP)
depletion, failure of Ca2+ homeostasis, activation of certain
proteases (e.g., calpains and cathepsins), lysosomal disruption,
and eventually plasma membrane rupture (Majno and Joris,
1995; Van Cruchten and Van Den Broeck, 2002; Golstein and
Kroemer, 2007; D’arcy, 2019). It has been shown that ARS
TABLE 3 | Summary of ARTs combinations with chemotherapy drugs and phytochemicals.

Compound Cell lines Event/mechanism References

DHA-cisplatin SKOV3/DDP mTOR inhibition, promote apoptosis (Feng et al., 2014)
A549, A549/DDP Suppress the expression of HIF-1a and VEGF to effect tumor angiogenesis,

increase apoptosis
(Zhang et al., 2013)

A549, LLC Inhibit tumor growth and metastasis (Zhou et al., 2010)
ARS-cisplatin A2780, HO8910 Downregulate RAD51 (Wang et al., 2015)
DHA-carboplatin A2780, OVCAR-3 Death receptor- and mitochondrion-mediated caspase-dependent apoptotic

pathways
(Chen et al., 2009)

LLC Inhibit cell proliferation, induce G0/G1 phase cell cycle arrest, increase cell
apoptosis, p38 MAPK activation

(Zhang B. et al., 2018)

DHA-5-FU HCT116 TP53-/- Inhibit proliferation, induce ROS-mediated apoptosis and Bcl-2/Bax↓ (Yao et al., 2018)
DHA-gemcitabine NCI-H1975 G2/M phase cell cycle arrest, cyclin B1↓, cyclin-dependent kinase 1↓, inhibit the

migratory and invasive, promote apoptosis
p-Akt↓ p-mTOR↓ p-STAT3↓ Bcl-2↓ Bax↑, Akt/mTOR/STAT3 pathway

(Hong et al., 2017)

A549 Induce apoptosis through bak-mediated intrinsic pathway and fas-caspase-8-
mediated extrinsic pathway

(Zhao et al., 2014)

BxPC-3, PANC-1 Inactivate NF-kB (Wang et al., 2010)
ARS-cytarabine, DHA-
cytarabine

human AML cell lines Produce initial regression, but did not prolong survival in vivo (Drenberg et al., 2016)

DHA-ABT-263 BCR-ABL+B-ALL leukemic cells Down-regulate MCL-1 expression (Budhraja et al., 2017)
Non-small cell lung cancer Inhibit STAT3 activity, modulate the expression of MCL-1, Survivin and Bim (Yan et al., 2018)

ARS-erlotinib glioblastoma multiforme cell lines Activate EGFR (Efferth et al., 2004;
Efferth, 2017a)

ARS-sorafenib Huh7, SNU-449, and SNU-182
HCC cell lines

Induce ferroptosis (Li et al., 2020)

DHA-curcumin SKOV3 Decrease cell viability, arrest cell cycle, promote apoptosis, MK↑, miR-124↑ (Zhao et al., 2017)
lethal(2)giant larvae, [l(2)gl] brain
tumor

Prolong life span, restore locomotor activity (Das et al., 2014)

ARS-triptolide PANC-1, CFPAC-1 Inhibit cell growth, induce apoptosis, HSP 20↓, HSP 27↓ (Liu and Cui, 2013)
DHA-dictamnine A549 Induce caspase-3–dependent apoptosis (An et al., 2013)
DHA-dexamethasone multiple myeloma cells ROS↑, △Ym↓, induce caspase-medicated apoptosis, overcome resistance (Chen Y. et al., 2020)
ARS-bicalutamide PC3, 22RV1, LNCaP Inhibit NF-kB signaling and decreases AR and/or AR-variant 7 expression via

ubiquitin-mediated proteasomal degradation, induce oxidative stress and
apoptosis via survivin downregulation and caspase-3 activation, resulting in poly-
ADP-ribose polymerase cleavage

(Nunes et al., 2017)

DHA-doxorubicin mutant p53 (R248Q)-expressing
Hep3B

Decrease P-gp expression via inhibiting the p53 (R248Q)-ERK1/2-NF-kB
signaling pathway

(Yang et al., 2019)
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induced oncosis-like cell death in pancreatic cancer and renal cell
carcinoma (Du et al., 2010; Jeong et al., 2015). The former cell
death occurred with the morphotype characteristics of oncosis
and the latter via ROS generation and ATP depletion (Du et al.,
2010; Jeong et al., 2015). Interestingly, in gastric cancer, ARS
promoted cell oncosis by decreasing the expression of VEGF and
increasing the amount of calcium and the expression of calpain-2
(Zhou et al., 2013).

Autophagy
Autophagy consists of the degradation and recycling of
organelles and portions of the cytosol (Parzych and Klionsky,
2014; Saha et al., 2018). As a “self-eating” process and well-
known type II programmed cell death, autophagy acts as a
double-edged sword because of its association with both cell
survival and death. It has been verified that ARTs induced
autophagy (Du et al., 2013; Feng et al., 2014; Jia et al., 2014; Qu
et al., 2017; Shi et al., 2017; Wang et al., 2017; Cheng et al., 2018;
Jiang et al., 2018; Thongchot et al., 2018; Guan and Guan,
2020). However, how autophagy accelerates cell death and
enhances the cell survival after ARTs exposure are contradictory.
Some evidence showed that autophagy induced by ARS
and DHA was to protect cancer cells (Jia et al., 2014; Jiang
et al., 2018), whereas autophagy induced by DHA was to kill
cancer cells (Qu et al., 2017). Other evidence of autophagy-
depended ferroptosis, cell cycle arrest and cell apoptosis
induced by ARTs and ARTs-induced autophagy sensitized
chemotherapy drugs to enhance the cell death demonstrated
Frontiers in Pharmacology | www.frontiersin.org 8
the killing effect (Feng et al., 2014; Zhang Z. S. et al., 2015;
Cheng et al., 2018; Du et al., 2019; Ma et al., 2020), whereas
autophagy inhibitor enhanced the anticancer property of ARTs,
indicating the protecting effect of autophagy (Chen S. S.
et al., 2015).

The molecular mechanisms of ART-induced autophagy
involved accumulation of ROS, which activated JNK pathway
in pancreatic cancer cells (Jia et al., 2014), or stimulating de novo
synthesis of ceramide and CaMKK2–AMPK–ULK1 axis, which
in turn cause the occurrence of autophagy in diffuse large B-cell
lymphomas (Cheng et al., 2018), or increasing the expression of
death-associated protein kinase 1 (DAPK1), reducing the
interaction of beclin1 with bcl-2 and promoting the interaction
of beclin1 with PI3KC3 in cholangiocarcinoma (Thongchot
et al., 2018). Alternatively, it might cause endoplasmic
reticulum stress and mitochondrial dysfunction in human
glioblastoma cells (Qu et al., 2017). ARTs-induced autophagy
was also mediated by inhibiting the nuclear localization of
phosphorylated STAT3 in human tongue squamous cell
carcinoma cells (Shi et al., 2017), as well as inhibiting the Akt/
mTOR signaling pathway in esophageal cancer cells (Chen X.
et al., 2020). Furthermore, ARTs regulated the crosstalk between
autophagy and inflammasomes, which induced the activation
absent in melanoma 2 (AIM2)/caspase-1 inflammasome to
trigger autophagy in hepatocellular carcinoma and induced
autophagy with suppressing the activation of IFI16/caspase-1
inflammasome and IL-1b production together with reducing the
expression of ubiquitin-specific processing protease 33 (USP33)
FIGURE 3 | New mechanisms of action of ARTs-mediated non-apoptotic cell death.
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and Ras like B (RalB) in human laryngeal squamous cell
carcinoma (Shi et al., 2019; Shi et al., 2020).

Ferroptosis
Ferroptosis, unlike traditional apoptosis and necrosis, is a novel
type of caspase-independent non-apoptotic cell death. It is
caused by accumulation of iron-dependent lipid peroxide and
is characterized mainly by cell volume shrinkage and enhanced
mitochondrial membrane density without typical apoptotic and
necrotic manifestations (Dixon et al., 2012; Xie et al., 2016; Lu
et al., 2017). ARTs exhibited anticancer activity related to ferric
iron and ROS which is similar to ferroptosis. Ooko et al. found
that the expression of numerous iron-related genes including
genes encoding transferrin, transferrin receptors 1 and 2,
cerulopasmin and lactoferrin were significantly correlated to
the log10IC50 values for ARTs, indicating ferroptosis-inducing
activity of ARTs (Ooko et al., 2015). Subsequently, ARTs-
induced ferroptosis was found in various types of cancer cells
in vitro and in vivo (Lin et al., 2016; Roh et al., 2017; Du et al.,
2019; Wang N. et al., 2019; Chen G. Q. et al., 2020). The
underlying molecular mechanisms involved the decrease of the
protein levels of glutathione peroxidase 4 (GPX4) and rat
sarcoma (Ras) in head and neck squamous cell carcinoma cells
(Lin et al., 2016), activation of the Nrf2–antioxidant response
element pathway in head and neck cancer cells (Roh et al., 2017)
and the ATF4-CHOP-CHAC1 pathway in Burkitt’s lymphoma
(Wang N. et al., 2019). Recently, Chen and Wang et al.
demonstrated that heat shock protein family A member 5
(HSPA5), also termed GRP78, is a negative regulator of DHA
or ARS-induced ferroptosis in KRAS mutant pancreatic cancer
cells and glioma cells (Chen Y. et al., 2019; Wang K. et al., 2019).

The Effects of ARTs on Cancer Metabolism
Metabolic changes have been demonstrated in cancer cells
compared to normal non-malignant cells. Warburg effect
describes a phenomenon in which, despite the presence of
oxygen, cancer cells preferentially metabolize glucose by
glycolysis to produce lactate as an end product (Warburg,
1956; Hsu and Sabatini, 2008). ARTs inhibited the glycolysis
capacity in various tumor cells. Mi et al. first reported that DHA
suppressed glucose uptake and glycolysis in non-small-cell lung
carcinoma cells and confirmed the effect associated with
inhibiting mTOR activity and reducing glucose transporter 1
(GLUT1) expression (Mi et al., 2015). Subsequently, Vatsveen
et al. observed that ARS decreased glycolysis capacity and
mitochondrial respiration capacity in B-cell lymphoma cells
although detailed mechanisms remain to be elucidated
(Vatsveen et al., 2018). However, inhibition of glycolysis of
DHA was illustrated via inhibiting PI3K/AKT pathway,
downregulating HIF-1a expression and down-regulating
pyruvate kinase M2 (Li S. et al., 2019; Zhu et al., 2019; Gao
et al., 2020). The oxidative pentose phosphate pathway, another
catabolic pathway of glucose, is important for tumor growth and
cancer cell metabolism. Elf et al. (2017) reported that targeting 6-
phosphogluconate dehydrogenase could sensitize leukemia cells
to DHA in oxidative pentose phosphate pathway. Besides
Frontiers in Pharmacology | www.frontiersin.org 9
an effect on glycolytic metabolism, ARS inhibited HCT116
colon cancer cell proliferation by suppressing the fatty acid
biosynthetic pathway, mainly downregulating three proteins:
acy l -CoA synthe ta se 5 , hydroxyacy l - coenzyme A
dehydrogenase and fatty acid synthase (Chen X. et al., 2017).

The Effects of ARTs on
Immunosuppression
The immunosuppressive properties of ARTs in tumor cells have
been reported. ART hampered 4T1 tumor growth by promoting T
cell activation and quelling immunosuppression from Tregs and
MDSCs (Cao et al., 2019). After ART treatment, MDSCs and
Tregs frequencies were significantly decreased and those of D4+

interferon g+ T cells and cytotoxic T lymphocytes were
significantly increased. The mRNA levels of T-bet, interferon g,
and tumor necrosis factor a were significantly increased and the
mRNA level of transforming growth factor b (TGF-b) was
significantly decreased. However, the expressions of interleukin
10 (IL-10) and forkhead box P3 (Foxp3) did not change
significantly, inconsistent with previous reports (Zhang et al.,
2014; Cui et al., 2015). The level of IL-10 was decreased greatly
in colorectal cancer and that of Foxp3 decreased in cervical cancer
after ARS treatment. In colorectal cancer, ARS downregulated the
immunosuppression by decreasing TGF-b1 and IL-10 levels (Cui
et al., 2015), which will be beneficial for colorectal tumor patients
with higher TGF-b1 and IL-10. In cervical cancer, ARS inhibited
prostaglandin production, which in turn led to the decreased
expression of Foxp3 in T cells (Zhang et al., 2014). In addition, the
expression of miRNAs was affected by ARS treatment, leading to
regulation of immunosuppression. In ovarian cancer, ARS up-
regulated miR-142 that in turn suppressed Sirt1 level and
promoted T helper 1 cell differentiation, thereby enhancing cell
apoptosis (Chen X. et al., 2019). In bladder cancer, ARS up-
regulated miR-16 expression, which decreased cyclooxygenase 2
expression and prostaglandin production (Jiang et al., 2018).

The Effects of ARTs on Cancer Stem Cells
Cancer stem cells (CSCs) have stem-like properties, with a
unique ability for self-renewal, proliferation and differentiation.
They play a crucial role in tumor occurrence, metastasis and
recurrence (Reya et al., 2001). Recent studies showed that ARTs
inhibited the expression of the CSC markers Nanog, Oct3/4,
ALDH1, CD44 and Sry-related high mobility group box (SOX2)
and cell sphere formation ability (Tong et al., 2016; Chen S. et al.,
2020), exhibited anti-CSC proliferation (Cao et al., 2014) and
induced CSC apoptosis (Li et al., 2014). They even synergistically
enhance anti-CSC proliferation of chemotherapeutic drugs
(Berte et al., 2016). Mechanisms included inhibiting p-AKT
and activating caspase-3, disturbing mitochondrial metabolism
and down-regulating the expression of RAD51, an important
component of DNA double-strand break repair (Cao et al., 2014;
Berte et al., 2016; Subedi et al., 2016). PI3K/Akt, MEK/ERK and
Wnt/b-catenin signaling pathways were involved in the
inhibition of cancer cells stemness of ARTs (Tong et al., 2016;
Chen S. et al., 2020). These new findings imply that ARTs can use
as CSCs inhibitor for cancer therapy.
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CLINICAL TRIALS

We searched for clinical trials of ARTs at ClinicalTrials.gov.
and in PubMed. ClinicalTrials.gov search results by keywords
“cancer” and “artesunate” show that some clinical trials of
ARS have entered phase II status in recent years. Different
modes of administration are used for different cancers.
However, no solid final results can be seen yet. In Pubmed,
there are only 3 studies in the last 3 years. We summarize the
latest research results in 2019 because some previous clinical
studies in dogs and humans have been comprehensively
reviewed by Efferth and Zhang et al. (Efferth, 2017b; Zhang
Y. et al., 2018).

Recent clinical studies for treating cancer focus on ARS. The
results showed dose-limiting toxicities could be seen at dosages of
12, 18 and 25 mg/kg by intravenous ARS in patients with
advanced solid tumor malignancies and the maximum tolerated
dose was 18 mg/kg using day1/day8, 3-week cycle of
administration (Deeken et al., 2018). The adverse events of
auditory and vestibular system in patients with metastatic or
locally advanced breast cancer after 4 weeks of add-on
therapy with oral ARS possibly related to the intake of ARS.
However, none of audiological results showed any dose-limiting
auditory toxicity and adverse events was fully reversible after
discontinuation of ARS, indicating that audiological monitoring
in further clinical studies with prolonged use of oral ARS in doses
up to 200 mg daily is necessary (Konig et al., 2016). Subsequently,
a short-term dose-finding study in metastatic breast cancer
patients also showed a well-tolerated dose of oral ARS was 200
mg (2.2–3.9 mg/kg/d). Three patients experienced leucopenia,
neutropenia, asthenia, anemia, dose-limiting adverse events
altogether, possibly related to ARS (Von Hagens et al., 2017).
However, short term trials only reveal limited safety information,
rarely generally needed for long-term treatment in advanced
cancer. Von Hagens et al. reported a long term add-on therapy
(compassionate use) study with oral ARS in metastatic breast
cancer after participating in a phase I study (ARTIC M33/2) to
ensure adequate individual safety and tolerability (Von Hagens
et al., 2019). 13 patients continued the add-on therapy as
compassionate use. A total of 25 adverse events grade ≥ 2 at
least possibly related to ARS long-term add-on therapy were
documented, two, six and seventeen in dose groups 100, 150 and
200 mg/d ARS respectively. Six of these adverse events were
classified as grade 3, two in patients taking 150 and four in
patients on 200 mg/d, indicating the dose-dependent toxicity.
However, none of them was probably or certainly related to ARS.

In summary, ARS was well tolerated and safe in patients
with solid tumor malignancies (Deeken et al., 2018) and
metastatic breast cancer (Konig et al., 2016; Von Hagens
et al., 2017; Von Hagens et al., 2019). However, safety
monitoring by reminders on ARS administration to detect the
occurrence of side-effects must be considered especially when
ARS is used in high dose. If necessary, drugs to prevent side-
effects should be combined. Moreover, although it is difficult to
differentiate between disease-related and drug-induced adverse
events in cancer patients, current results show that adverse
events were possibly related to the intake of ARS. Whether
Frontiers in Pharmacology | www.frontiersin.org 10
adverse events are certainly induced by ARS should be
determined in future clinical trials. Some factors e.g. mode of
administration, dosage and internal and duration of drug
administration influence the safety and efficacy. A detailed
examination of these factors needs to be taken seriously in
future. Finally, currently available phase I clinical trial results of
ARTs for treating cancer are still largely limited and the
number of participating patients is small. In future, large
scale phase II, III and IV clinical trials are needed to provide
more convincing evidence for the suitability of ARS in clinical
oncology, and more clinical trials of other ARTs such as DHA,
ARM and ARE etc. should be advanced.
SUMMARY AND OUTLOOK

ARTs which are already established as safe drugs for treating
malaria, possess a host of advantages that make them worthy
of development as novel anticancer agents. They differ from
available anticancer drugs because of the characteristics of
high selectivity and efficacity against multiple cancers in cell and
biological models as well as more sensitivity to chemoradiotherapy
and less susceptibility to resistance. In this review, we summarized
novel cancer therapeutic approaches based on ARTs, the latest
molecular mechanisms of action and clinical studies. As a whole,
ARTs have great potential to be used in clinical oncology, but there
are still many problems to be solved.

First, because of poor solubility, short half-life, low
bioavailability and toxicity of ARTs, developing novel
derivatives and nanodrugs were applied to solve these
problems. However, despite the cost savings in drug
development by structural modification of ARTs to obtain
candidates, updated preclinical and clinical studies of these
modified derivatives are still limited. Besides, the aim of
developing nanodrugs is to improve the physicochemical
property of ARTs, but subsequent pharmacokinetic studies of
these nanodrugs are rarely reported. Whether these new
preparations actually improve the pharmacokinetic parameters
needs to be further clarified.

Second, though the promising anticancer activity of ARTs has
been identified in vitro and in vivo, the dose used is at mM level,
still high in comparison with nM level of antimalarial activity.
The higher the dose, the greater the possible side effects. Dose-
dependent neurotoxicity has become the biggest obstacle to
develop ARTs as clinical drugs (Genovese et al., 2000; Li et al.,
2005). The toxicity to neuron should be considered when
screening drugs. Furthermore, monitoring side-effect, especially
neurotoxicity must be performed in future to successfully obtain
promising drug candidates.

Third, the accurate mechanism of action is still controversial,
and the target of action has not been completely elucidated.
Current studies show that ARTs can affect tumor progression by
multi-approaches and multi-links. Apoptotic cell death and non-
apoptotic cell death are both involved in the antitumor activity of
ARTs. In addition, ARTs have effects on cancer metabolism,
immunosuppression and CSCs. However, the related literature is
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https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Xu et al. Anticancer Applications of Artemisinins
still relatively scarce. More in-depth research into these aspects
is needed.

Finally, clinical study of cancer patients needs to be advanced
for not only first-generation derivatives but also newly developed
derivatives to obtain more comprehensive information of ARTs.
The eventual development of such derivatives into approved
drugs for cancer chemotherapy will be enormously important.
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