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immobilization, and even death [4]. This
underscores a central role for UPP in
the maintenance of tegument integrity
and survival in schistosomes. Consid-
ering the importance of UPP in both
larval and adult worm stages [9,10],
Wang et al. then sought to evaluate its
druggability. By filtering databases and
chemical libraries, a series of com-
pounds were therefore selected by
their potential to inhibit UPP compo-
nents. This last and most exciting ap-
proach allowed the identification of
p97, a central component in the UPP,
as a novel target for drug development.
In sum, this article sheds light on the
usefulness of large-scale RNAi for
unraveling complex cellular pathways
and exploring their potential benefit in
the field of schistosomiasis.

Altogether, these two illuminating arti-
cles provide an unprecedented founda-
tion for a better understanding of
multiple aspects of schistosome biology
and, as a consequence, unveil hidden
drug targets. Notably, these findings
have highlighted some pre-existing
pharmacological agents, thus accelerat-
ing the discovery of unexpected highly
effective anthelmintic compounds. It is
also important to underline the consider-
able value of the state-of-the-art
methods used here in order to identify
other clinical drug candidates with selec-
tive activity on these worms (and thus with
limited side effects). One future avenue for in-
vestigationmay concern reproductive biology
(i.e., egg production) of schistosomes be-
cause such therapeutic intervention would
combine the advantage of reducing the pa-
thology with a limitation in transmission.
The latest exciting developments in func-
tional genomic technologies (especially
CRISPR-Cas9) will undoubtedly stimu-
late further fruitful research into this im-
portant area of schistosome biology and
greatly help disease control and the de-
velopment of innovative therapeutic
strategies.
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i www.collinslab.org/schistocyte/
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Artemisinin-based combination ther-
apies (ACTs) have demonstrated
in vitro inhibition of severe acute
respiratory syndrome coronavirus
2 (SARS-CoV-2). Artemisinins have
also shownanti-inflammatory effects,
including inhibition of interleukin-6
(IL-6) that plays a key role in the de-
velopment of severe coronavirus
disease 2019 (COVID-19). There
is now sufficient evidence for the
effectiveness of ACTs, and in par-
ticular artesunate/pyronaridine, to
support clinical studies for COVID-
19 infections.

Drug Repurposing Accelerates the
Discovery of New Cures
Using a drug that works for one disease to
treat an unrelated condition can reduce
suffering and save lives. Antimalarials pro-
vide abundant examples of such suc-
cesses. When quinidine was purified from
cinchona alkaloids, earlier empirical obser-
vations on its antiarrhythmic properties led
Walter Frey to conclude that it was the
most effective of the four cinchona alka-
loids in 1918. A merchant first proposed
examining cinchona alkaloids to treat ar-
rhythmias because he noticed that when
he took quinine to prevent malaria his
heart irregularities resolved. Quinine was
being used to treat discoid lupus erythe-
matosus with indifferent results until
Francis Page (a Registrar at the Middle-
sex Hospital in London) described the
beneficial effects of mepacrine (an anti-
malarial agent that is structurally related
to chloroquine and was used during
World War II) in most of 18 patients. A
few years later, building on chloroquine’s
success as an antimalarial in the late
1940s, hydroxychloroquine was also
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Figure 1. COVID-19 Disease Progression and Stages with the Potential to Be Targeted by
Antimalarial Drugs. During Stages 1 and 2 of infection there is viral replication, which may be targeted by
antimalarials, including pyronaridine and artesunate. During Stages 3 and 4 of infection, a cytokine storm
syndrome occurs that is characterized by increased proinflammatory markers. These latter stages may be
targeted by the anti-inflammatory effects of artemisinins, including artesunate. Abbreviations: ARDS, acute
respiratory distress syndrome; COVID-19, coronavirus disease 2019; IL-6, interleukin-6; IL-1, interleukin-1;
MOF, multiorgan failure; TNF, tumor necrosis factor.

used in a case series of seven patients,
many of whom had not responded to
other antimalarials but were successfully
treated.

These descriptions illustrate how success-
ful repurposing of drugs can provide last-
ing medical benefits despite having been
developed in less rigorous regulatory envi-
ronments. The COVID-19 pandemic now
necessitates urgent attempts at
repurposing antimalarials.
Hydroxychloroquine seized the global at-
tention of politicians, the public, and in-
vestigators. The basis for wanting to
repurpose hydroxychloroquine derived

from its in vitro activity against SARS-
CoV-2 (the causative agent of COVID-19),
its affordability, its well understood safety
profile in other conditions, and the re-
sults of small uncontrolled studies sug-
gesting antiviral and clinical benefits in
patients. As illustrated previously, un-
controlled studies and case series can
highlight interventions that may be use-
ful, especially when it comes to the
design of larger controlled trials. How-
ever, current standards demand that
any new intervention (even using an
old drug) should be tested rigorously
which can produce results that do
not always agree with the preliminary

studies. This is highlighted by the re-
sults of a large, randomized trial [1] for
hydroxychloroquine that did not dem-
onstrate a benefit in mortality prevention
for COVID-19.

Antimalarials as Potential
Therapeutic Agents for COVID-19
Are there any other promising anti-
malarials that might be worth investigat-
ing in the management of COVID-19?
Pyronaridine (a mepacrine nucleus with
an amodiaquine-like addition) was first
made in 1970 at the Institute of Chinese
Parasitic Disease and used as an anti-
malarial monotherapy given orally and
parenterally to treat chloroquine-resistant
Plasmodium falciparum infections. It has
since been combined with artesunate (in a
3:1 ratio) to form an ACT that is safe and
which cures otherwise multidrug-resistant
infections [2]. In vitro studies comparing
pyronaridine, artesunate, and hydroxy-
chloroquine effectiveness against SARS-
COV-2 show that pyronaridine and
artesunate are more potent than hydroxy-
chloroquine [3] in the human lung epithelial
cell line Calu-3 (Table 1). Another ACT,
mefloquine–artesunate has also shown
potent antiviral activity against SARS-
CoV-2 [4] with increased drug concentra-
tion in lung tissue, a potential clinical
advantage in COVID-19 (Table 1).

COVID-19 and the Cytokine Storm
Are there other reasons, beyond antiviral
properties, that would make artemisinins,
and in particular artesunate, useful in
managing patients with COVID-19? To
answer this question, we need to under-
stand the pathophysiology of COVID-19
progression (Figure 1). In most patients,
the natural history of COVID-19 infection
is self-limiting with a presymptomatic or
asymptomatic phase lasting a few days
(Stage 1) followed by symptoms of fever,
cough, and systemic malaise. After a me-
dian time of 5 days, the disease progresses
from the upper to the lower respiratory
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Table 1. In Vitro Antiviral Effect of Selected Antimalarials against SARS-CoV-2

*IC50 values are estimated based on the 3-point dose-response data (2x/1x/0.5x expected Cmax concentra-
tions) in [4]. The concentrations of each drug used are shown.

Drug Cell line IC50 (μM) Refs

Pyronaridine
Vero 1.1 [3]

Calu-3 6.4 [3]

Artesunate
Vero 53.0 [3]

Calu-3 1.8 [3]

Hydroxychloroquine
Vero 1.1 [3]

Calu-3 103.0 [3]

Mefloquine-dihydroartemisinin* Vero Between 4.1-2.5 & 2.0-1.3 [4]

Desethylamodiaquine-dihydroartemisinin* Vero Between 4.0-5.0 & 2.0-2.5 [4]

Pyronaridine-dihydroartemisinin* Vero > 0.5-1.0 [4]

Lumefantrine-dihydroartemisinin* Vero > 33.0-2.0 [4]

Piperaquine-dihydroartemisinin* Vero > 1.0-3.1 [4]

Image of Figure 1


tract as a viral pneumonia (Stage 2).
Around day 7–10, the detectable upper
respiratory viral load decreases, antibody
responses are generated, and patients
start to recover. However, at 7–14 days a
small proportion of patients develop a cyto-
kine release syndrome (CRS)/cytokine
storm (CS), the hallmarks of which appear
to be elevated host markers of inflamma-
tion [e.g., increased C-reactive protein
(CRP), ferritin, D-dimers] and lymphopenia.
Patients experiencing CRS often develop
progressive respiratory failure (Stage 3)
that can then lead to acute respiratory dis-
tress syndrome (ARDS) and multiorgan
failure (MOF) (Stage 4).

Interleukin-6 (IL-6) is promptly and tran-
siently produced in response to tissue
injury and infection, stimulating acute-
phase responses, hematopoiesis, and im-
mune reactions, which contribute to host
defense [5]. In chronic inflammation and
autoimmune diseases, dysregulated con-
tinual synthesis of IL-6 leads to significant
pathophysiological effects. Apart from
IL-6, other proinflammatory cytokines,
such as IL-1, interferon-gamma (IFN-γ)
and tumor necrosis factor (TNF) are pro-
duced during CRS/CS and contribute to
pathophysiological processes that result
in MOF. Although rare, symptoms similar
to Kawasaki disease are another delayed
immunological manifestation of SARS-
CoV-2 infection in children [6].

In patients admitted to intensive care units,
around 60–70% develop ARDS, followed
by shock (30%), myocardial dysfunction
(20–30%), and acute kidney injury
(10–30%). In these critically ill patients,
between 42 and 100% will require
mechanical ventilation. Risk factors for
developing severe COVID-19 disease in-
clude older age, male sex, comorbidities
(including chronic lung disease, cardiovas-
cular disease, diabetes, obesity, cancer,
and organ transplantation). Genetic factors
and ethnicity may also play a role [7].
Several therapeutic agents have been

proposed for the treatment of CRS, includ-
ing corticosteroids, intravenous immuno-
globulin, selective cytokine blockade, and
Janus kinase (JAK) inhibition [8].

The RECOVERY trial has shown a mortality
benefit of dexamethasone in patients with
moderate and severe COVID-19, supporting
the importance of anti-inflammatory interven-
tions to manage the complications of CRS.
Tocilizumab is an anti-IL-6 antibody that
binds membrane-bound and soluble IL-6
receptors, blocking IL-6 from exerting its
proinflammatory effects. It is currently
licensed for the treatment of CRS related to
chimeric antigen receptor (CAR)-T cell ther-
apy and rheumatoid arthritis. Tocilizumab
has also been trialed in different studies
to treat severe COVID-19, including the
specific features of CRS [9], and may be
beneficial in reducingmortality andmorbidity,
although more studies are needed.

Artemisinins as Potential
Therapeutic Agents for COVID-19
In addition to their in vitro SARS-CoV-2
effects, as noted earlier, artemisinins,
including artesunate, also have anti-
inflammatory properties. These include
those directed at IL-6-mediated pathways.
The anti-inflammatory effects of artesunate
in a range of disease states are detailed
later and suggest that artemisinins may be
beneficial in managing COVID-19 patients.

Artesunate in Sepsis and
Hemorrhagic Shock
In a sepsis model, artesunate inhibited lipo-
polysaccharide (LPS)/endotoxin-induced
IL-6 and TNF-α release [10] from bone-
marrow-derived monocytes, peritoneal
macrophages, and the RAW264.7 mouse
cell line. Toll-like receptor 4 (TLR4) is utilized
by monocytes/macrophages of the innate
immune system to recognize LPS. This
then triggers activation of TNF receptor-
associated factor 6 (TRAF6) which, in turn,
activates nuclear factor (NF)-κB. NF-κB is
known to promote the release of

downstream proinflammatory cytokines
such as IL-6 and TNF-α.

In a rat model of hemorrhagic shock,
artesunate attenuated the expression
of proinflammatory proteins IL6, TNF-α,
NF-κB, and nitric oxide synthase (NOS).
This protected against MOF [11]. Pathway
analysis by RNAseq supported an effect
of artesunate on the protein kinase B
(PKB or Akt)-survival pathway, resulting
in IL-1 receptor-associated kinase 1
(IRAK1) downregulation. Treating rats
with artesunate enhanced the phosphor-
ylation (activation) of endothelial (e)NOS
and Akt as well as the phosphorylation
(inhibition) of glycogen synthase kinase-
3β (GSK-3β). Akt activation is linked to
the prevention of a range of organ injuries
and phosphorylates eNOS at Ser117,
enhancing production of nitric oxide (NO).
This is pivotal to preserve microvascular
perfusion and prevent MOF.

Artesunate in Models of Acute
Lung Injury and Nephritis
In a rat model of LPS-induced lung injury,
artesunate reduced levels of IL-6, IL-1β,
and TNF-α. TLR4 expression and NF-κB
activationwere also attenuated by artesunate,
which upregulated expression of nuclear
factor erythroid 2-related factor 2 (Nrf2)
and heme oxygenase-1 (HO-1) [12]. In
another rat model [13], artesunate inhibited
renal reperfusion-stimulated lung inflamma-
tion by attenuating serum and pulmonary
IL-6, macrophage-inflammatory protein 2
(MIP-2), prostaglandin E2 (PGE2), NO and
malondialdehyde (MDA) levels, and acti-
vated the HO-1 pathway.

In a rat model of nephritis, artesunate
attenuated IL-6 levels, TNF-α, transforming
growth factor (TGF)-β1, TLR4, and NF-κB
expression [14]. Artesunate also amelio-
rated high glucose-induced injury in rat glo-
merular mesangial cells via suppression of
the TLR4/NF-κB/nod-like receptor protein
3 (NLRP3) inflammasome pathway [15].
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Concluding Remarks
There is sufficient evidence for the anti-
viral and anti-inflammatory effects of
antimalarials to support further clinical
therapeutic studies for COVID-19 infec-
tions. In particular, pyronaridine has
demonstrated in vitro antiviral effects
on SARS-CoV-2 in a human lung epi-
thelial cell line, while artesunate, in ad-
dition to similar antiviral effects, has
anti-inflammatory effects via IL-6 medi-
ated pathways in other disease states
that suggest it may be beneficial in the
treatment of COVID-19 (Table 1,
Figure 1). Thus, the ACT artesunate/
pyronaridine deserves further investi-
gation as a COVID-19 treatment option.
The safety of this antimalarial combina-
tion is established in malaria in children
and adults, providing some reassur-
ance for studies in COVID-19. Several
Phase II studies are being imple-
mented, and their design may benefit
from the varied mechanisms of action
that have been outlined, including as-
sessment of the broad-spectrum anti-
inflammatory properties of artesunate.
In addition, care should be taken to
test this combination with rigor and
not over promise its potential so as to
avoid the issues that surrounded the
use of hydroxychloroquine.
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In recent months, the parasitology
researchcommunity hasbeen tasked
with investigation of the influence of
parasite coinfection on coronavirus
disease 2019 (COVID-19) outcomes.
Herein, we share our approach to
analyze the effect of the trema-
tode Fasciola hepatica as a modu-
lator of severe acute respiratory
syndrome coronavirus 2 (SARS-
CoV-2) infection and of COVID-19
pathology.

Helminth parasites have adapted to their
hosts during long coevolution processes,
which usually result in chronic disease
with low mortality and variable morbidity.
During this evolutionary coadaptation with
their hosts, including vertebrate hosts,
parasites have contributed to the modula-
tion of several molecular and physiological
host mechanisms, for example, the im-
mune system. Thereby, helminth parasites
trigger a modulated T helper (Th)2 re-
sponse in their vertebrate hosts, resulting
in an immune reaction with a tightly con-
trolled inflammatory component, including
the inhibition of proinflammatory cytokines
and the induction of a hyporesponsive
state involving interleukin-10 (IL-10)-
producing T regulatory (Treg) cell popu-
lations [1]. In addition, the hygiene
hypothesis proposes that the absence
of helminth infections in the population
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