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Abstract. Artesunate (ART) is a derivative of artemisinin that 
is extracted from the wormwood plant Artemisia annua. ART 
is an antimalarial drug that has been shown to be safe and 
effective for clinical use. In addition to its antimalarial proper‑
ties, ART has been attracting attention over recent years due 
to its reported inhibitory effects on cancer cell proliferation, 
invasion and migration. Therefore, ART has a wider range of 
potential clinical applications than first hypothesized. The aim 
of the present review was to summarize the latest research 
progress on the possible anticancer effects of ART, in order 
to lay a theoretical foundation for the further development of 
ART as a therapeutic option for cancer.
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1. Introduction

Cancer is a major health concern worldwide (1,2). According 
to GLOBOCAN 2020, which presented the latest estimates of 
cancer incidence and mortality (3), there were ~19.3 million 
new cases of cancer and 10 million cancer‑related deaths 
worldwide in 2020. As such, the number of cancer cases world‑
wide is expected to reach 28.4 million by 2040, a 47% increase 
from 2020 (4). Asia, Latin America, the Caribbean and Africa 
are expected to experience particularly large increases in 
cancer morbidity and mortality rates (3). Therefore, it is crucial 
to develop novel anticancer agents.

Artesunate (ART) is a derivative of artemisinin that is 
characterized by high efficacy, rapid effects, low toxicity and 
reduced susceptibility to drug resistance (5,6). At present, ART 
is commonly used for the treatment of mild to severe malaria 
worldwide (7). However, accumulating evidence has shown 
that ART also displays anticancer properties, in addition 
to its antimalarial effect (8). For instance, ART has been 
reported to induce apoptosis and autophagy in human bladder 
cancer cells (9,10). Moreover, it can induce cell cycle arrest, 
reactive oxygen species (ROS) generation and ferroptosis in 
renal cell carcinoma (11). In the present review, the potential 
anticancer effects of ART and the underlying mechanism of 
action involved are summarized. The aim was to provide a 
theoretical basis for the further development of ART and its 
derivatives for the treatment of cancer.

2. Source and activity of ART

ART is a semi‑synthetic, monomeric derivative of artemisinin 
isolated from Artemisia annua in the 1970s (12‑14). The 
conversion from artemisinin to ART is a two‑step process, 
starting with reduction of dihydroartemisinin with diisobutyl‑
aluminium hydride, followed by esterification with succinic 
anhydride (14). The chemical name of ART is dihydroartemis
inin‑1,2‑α‑succinate monoester, with the chemical formula of 
C24H39O8 and a molecular weight of 455.56 g/mol (15).

ART has a hydrophilic group, and the 1,2,4‑endoperoxide 
bridge is responsible for the antimalarial activity of the drug. 
ART acts on all stages of malaria parasite circulation. ART 
also may penetrate the cell membranes and generate ROS, 
and a small amount of ART reaches the mitochondria of the 
parasite, where ART and ROS react with each other, leading 
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to mitochondrial dysfunction (8). ART is the only artemisinin 
derivative with high water solubility, due to the addition of the 
hemisuccinate group. ART is metabolized to docosahexaenoic 
acid (DHA) as it enters the body (16‑18). ART induces 
the generation of ROS, increasing malondialdehyde levels 
and decreasing the levels antioxidants such as superoxide 
dismutase and catalase, thereby causing alkylation of the 
proteins of the Plasmodium parasite (19). At present, ART is 
mainly used for the treatment of malaria of all types (20), for 
immune regulation (in type 1 diabetes in NOD mice) (21), as 
well as for liver (22), breast (23) and lung (24‑26) cancer.

3. Anticarcinogenic mechanism of ART

There is considerable evidence that ART can exert anticancer 
effects on several types of cancer cells (6,15). ART has been 
reported to induce apoptosis, differentiation and autophagy 
in colorectal cancer cells by impairing angiogenesis (27), 
inhibiting cell invasion and migration (28), inducing cell cycle 
arrest (11), upregulating ROS levels, regulating signal transduc‑
tion [for example, activating the AMPK‑mTOR‑Unc‑51‑like 
autophagy activating kinase (ULK1) pathway in human bladder 
cancer cells] (9) and blocking immune escape (29). In addition, 
ART has been shown to restore the sensitivity of a number of 
cancer types to chemotherapeutic drugs by modulating various 
signaling pathways; for example, ART can improve the apop‑
tosis of HCC by inhibiting the PI3K/AKT/mTOR pathway (30), 
and can increase liver cancer cell sensitivity to sorafenib via 
suppression of the MEK/ERK pathway (31) (Fig. 1).

Apoptosis. Apoptosis is a type of programmed cell death that 
does not elicit inflammatory responses (32). A number of studies 
have shown that ART can induce apoptosis by activating the 
mitochondria‑dependent pathway, specifically by mediating the 
activation of caspase‑3 and ‑9 and the release of cytochrome 
c into the cytosol after permeabilization of the mitochondrial 
membrane (33). Additionally, ART can induce HL‑60 human 
acute promyelocytic leukemia cell and KG1a acute myeloid 
leukemia cell death by regulating antiapoptotic proteins, such 
as Bcl‑2, as well as proapoptotic proteins, such as Bid and 
Bak, through inhibition of the MEK/ERK and PI3K/Akt path‑
ways (34). ART has also been demonstrated to induce T helper 
1 cell differentiation and promote apoptosis in ovarian cancer 
cells via the microRNA (miR)‑142/sirtuin 1 pathway (35).

Autophagy. Autophagy is a conserved, self‑degrading system 
that is essential for maintaining cell homeostasis under 
stress conditions, and which has been demonstrated to serve 
an important role in cancer in association with a family of 
autophagy‑related proteins (LC3B) (36). ART can induce 
autophagy and increase the levels of CD155 in uterine corpus 
endometrial carcinoma (UCEC) cells. Moreover, it also 
regulates the interaction between CD155 and its receptor on the 
NK92 natural killer cell line by upregulating the co‑stimulator 
CD226 and downregulating the co‑inhibitor TIGIT, thereby 
enhancing the cytotoxicity of these cells. Thus, ART has a 
dual anticancer effect on UCEC cells (37). ART also induces 
autophagy by upregulating ROS production and activating 
the AMP‑activated protein kinase/mTOR/ULK1 pathway in 
human bladder cancer cells (9).

ROS. ROS have a dual role in cellular metabolism (38). Their 
production is impaired during normal cellular homeostasis, 
whilst excessive production can lead to oxidative stress (OS), 
a process that can lead to damage to cellular structure (39). 
A study has shown that higher levels of ROS are important 
for the initiation, progression, angiogenesis and metastasis of 
cancer (40). Dysregulation of ROS has been found to promote 
tumorigenesis through activation of various oncogenic, 
signaling pathways such as MAPK, PI3K/AKT/mTOR 
and NF‑κB (18,40), DNA damage (41,42), immune escape, 
metastasis, angiogenesis and telomere elongation (40). ROS 
production has been demonstrated to play an important 
role in ART‑induced apoptosis in various tumor cell lines, 
including glioblastoma (43), lymphoma (44), breast cancer 
cells (45). Yao et al (46) suggested that ART could increase 
ROS levels in the hepatocellular carcinoma (HCC) cell lines 
Huh7 and Hep3B. In addition, the combination of sorafenib 
and ART treatment was found to synergistically produce 
antiproliferative effects in HCC cells and induce apoptosis.

Inhibition of angiogenesis. Blood vessels provide oxygen 
and a nutrient supply for the growth of tumors, which also 
facilitate the proliferation, migration and subsequent invasion 
of malignant tumor cells in the long term (47). Angiogenesis 
is a dynamic and complex process that is regulated by 
a variety of mechanisms. Inhibition of angiogenesis has 
become a therapeutic strategy for pancreatic cancer (48), 
breast cancer (49) and ovarian cancer (50). Chen et al (51) 
demonstrated that ART could downregulate the expression 
of VEGF and angiopoietin‑1 in RPMI8226 myeloma cells, 
decrease the activation of ERK1and inhibit angiogenesis. Their 
study indicated that ART possessed a potential anti‑myeloma 
effect, which was mediated by the inhibition of angiogenesis.

Cell cycle arrest. Aberrant cell division is one of the 
characteristic features of cancer cells (52). ART inhibits the 
proliferation of bladder cancer cells (RT4, RT112, T24 and 
TCCSup), which is associated with G0/G1‑phase cell cycle arrest 
and downregulation of cell cycle regulatory proteins [cyclin 
D1 and CDK4 (required for entry into the G1 phase); CDK1 
and cyclinA/B (essential during the late S phase and early M 
phase)] (10). ART can block cell cycle progression and lead to 
a significant reduction in the levels of the cell cycle activating 
proteins cyclin A, cyclin B, and CDK1, evoking G0/G1 phase arrest 
and inhibiting growth of the cells in renal cell carcinoma (11). 
In breast cancer cells (MCF‑7 and MDA‑MB‑231), ART can 
block G2/M progression by upregulating beclin‑1 expression, 
which promotes autophagy (53). In glioblastoma cells (A172, 
U251 and U87), ART also increases the proportion of cells in 
the G0/G1 phase, reduces the proportion of cells in the S phase 
and inhibits proliferation by downregulating the expression 
levels of the cell cycle‑related proteins CDK2, CDK4, cyclin D1 
and cyclin B1 (54).

Ferroptosis. Ferroptosis is a recently identified form of regulated 
cell death, which is characterized by iron overload, lipid ROS 
accumulation and lipid peroxidation (55). Evidence suggests that 
ferroptosis is closely associated with the occurrence, develop‑
ment and inhibition of cancer (56). Zhang et al (26) demonstrated 
that ART could upregulate the mRNA levels of transferrin 
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receptor (a positive regulator of ferroptosis), thus inducing 
apoptosis and ferroptosis in A549 non‑small cell lung cancer 
(NSCLC) cells. Li et al (57) showed that ART enhanced the 
anticancer effects of low‑dose sorafenib (a novel multi‑targeted 
oral drug for the treatment of gastroenteric tumors) against 
Huh7, SNU‑449, and SNU‑182 HCC cell lines in vitro and 
against a Huh7 cell xenograft model in BALB/c nude mice. In 
addition, ART‑induced lysosome activation synergizes with 
the pro‑oxidative effects of sorafenib to sequentially promote 
lysosomal cathepsin B/L activation, ferritin degradation, lipid 
peroxidation and ferroptosis (57).

4. Potential role of ART in human malignancies

Previous studies have reported that ART exerted minimal 
toxicity, was cost‑effective and was effective for treating 
different types of cancer (Table I) (58‑78). The potential 
anticancer properties of ART in different types of cancer are 
discussed below.

Leukemia. Leukemia is a clonal hematopoietic stem cell 
malignancy (79). ART can induce leukemic T cell apoptosis by 
promoting the generation of mitochondrial ROS (80). Previous 
studies have suggested that ART induces caspase‑3/9‑mediated 
apoptosis by targeting the outer mitochondrial membrane, 
leading to the activation and nuclear translocation of 
mitochondrial pro‑apoptotic factors in human SKM‑1 

myelodysplastic syndrome cells (81). Nuclear translocation 
of apoptosis‑inducing factors and endonuclease G were 
accompanied by low levels of ROS and increased mitochondrial 
production of superoxide, which occur prior to apoptosis and 
appear to be associated with the intracellular levels of divalent 
iron (59,60,82‑84). Chen et al (34) found that ART may inhibit 
the levels of phosphorylated (p)‑PI3K, p‑AKT, p‑MEK1 and 
p‑ERK1/2 and promote the apoptosis of leukemia cells (HL‑60 
and KG1a cells) by inactivating PI3K/Akt and MEK/ERK 
signaling, ART also significantly reduced the expression of 
Ki67 and survivin, inhibited growth and stemness in KG1 
xenograft models (34). In the MV4‑11 cell line, ART combined 
with bortezomib (which is commonly used for the treatment 
of patients with multiple myeloma) resulted in significantly 
higher proliferation inhibition and reduced apoptotic rates 
compared with ART or bortezomib alone in the same 
concentration gradient. After the combination of the two drugs 
for 24 h, the expression of the pro‑apoptotic proteins BIM and 
cleaved activated caspase‑3 and the autophagy‑related protein 
LC3B was upregulated in MV4‑11 cells, whereas that of the 
anti‑apoptotic protein Bcl‑2 was downregulated (58).

Nervous system tumors. Central nervous system tumors 
comprise a group of malignancies that originate from tissues or 
structures of the central nervous system and exhibit an incidence 
of 5.6 per 100,000 person‑years in children under the age of 
19 (85‑87). ART can selectively downregulate the expression 

Figure 1. Anticarcinogenic mechanism of artesunate. Multiple molecular and signaling pathways regulate abnormal cell proliferation and migration, such as 
the NF‑κB signaling pathway, the PI3K/Akt/mTOR signaling pathway and the JAK/STAT signaling pathway, among others, ultimately leading to tumorigen‑
esis. Artesunate may affect the development of cancer by interfering with the cell cycle, proliferation, invasion, angiogenesis and apoptosis of cancer cells by 
acting on different sites. EMT, epithelial‑mesenchymal transition.
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of survivin and induce the DNA damage response in glial 
cells to increase cell apoptosis and cell cycle arrest, resulting 
in increased sensitivity to radiotherapy (88). Previously, 
Wei et al (67) found that ART affected the nuclear localization 
of sterol regulatory element‑binding protein 2 (SREBP2) by 
decreasing the expression of 3‑hydroxy‑3‑methylglutaryl‑CoA 
reductase and inhibited the mevalonate pathway, which in turn 
influenced the metabolism of glioma cells. In addition, ART 
disrupted the interaction between P53 and SREBP2 (which 
negatively regulates P53 and inhibits senescence), upregulated 
the expression of P21 and induced senescence in the U251, 
U87, U138 and SK‑N‑SH human glioma cell lines (67). The 
combination of ART and rapamycin (a specific inhibitor 
of mTOR) has been shown to synergistically decrease 
translation‑controlled tumor protein (TCTP) expression and 
enhance the cytotoxicity of malignant peripheral nerve sheath 
tumor (MPNST) cells via mTOR‑TCTP positive feedback 
loop, the results also suggested that TCTP may be a new 
target for the treatment of neurofibromatosis type 1‑associated 
tumors and MPNSTs (89).

Thyroid carcinoma. Thyroid cancer is the most common 
cancer in the endocrine system, and its incidence is increasing 
worldwide (90). Anaplastic thyroid carcinoma (ATC) is an 
aggressive malignancy that is almost always fatal and lacks 
effective systemic treatment options. It is highly resistant to 
chemotherapy due to its undifferentiated and aggressive char‑
acteristics (91,92). Ma and Fei (91) showed that ART could 
inhibit growth and induce apoptosis in ATC cells (8505C, 
8505C‑r, KAT‑4‑r and KAT‑4), by suppressing mitochondrial 
respiration and acting synergistically with chemotherapy 
drug doxorubicin without affecting glycolysis. Thus, ART 
led to oxidative stress and damage in ATC cells. Their work 
suggested that ART was a potential complement to the treat‑
ment of ATC, particularly cases with chemoresistance (91).

Breast cancer. Breast cancer is one of the most common 
malignancies among women (93). Despite decades of 
laboratory, epidemiological and clinical research, breast 
cancer rates continue to rise. Breast cancer remains the 
leading cancer‑related cause of the burden of disease among 
women, affecting 1 in 20 women globally and 1 in 8 women 
in high‑income countries (94,95). Systemic treatment 
(chemotherapy and endocrine therapy) of breast cancer 
is initially effective; however, after a period of time, drug 
resistance typically develops (96). ART has also been found to 
block the cell cycle progression of MCF‑7 and MDA‑MB‑231 
cells at the G2/M phase and upregulate the expression of p21 
and Beclin‑1, thereby inhibiting the proliferation of breast 
cancer cells by inducing autophagy (53). ART treatment was 
also revealed to inhibit the proliferation of the triple‑negative 
breast cancer cell line MDA‑MB‑468 and the human epidermal 
growth factor‑2‑enriched breast cancer cell line SK‑BR‑3 
in a dose‑ and time‑dependent manner. The proliferation 
of MDA‑MB‑468 and SK‑BR‑3 cells was inhibited by 
ROS‑dependent G2/M cell cycle arrest and ROS‑independent 
G1 cell cycle arrest (68). Furthermore, ART can inhibit breast 
cancer MCF‑7 cell proliferation and promote G2/M arrest 
by activating the ataxia‑telangiectasia mutated/checkpoint 
kinase 2/cell division cycle 25 (CDC25) C pathway (69). By 

loading ART into the lipid core of a polymer‑lipid hybrid 
carrier, the anticancer activity and physical stability of ART 
were found to be significantly increased and can be used 
for chemotherapy (97‑99). Raza et al (100) found that ART 
generated the reactive oxygen species (ROS), resulted in 
DNA damage and enhanced the apoptosis of neighboring 
cells (Cx43‑MCF7 cells) in breast cancer MCF‑7 cells. In 
addition, the dose‑dependent cytotoxicity of ART could be 
reduced by the gap junction (GJ) protein connexin‑43 (Cx43). 
Li et al (101) found that ART could inhibit lysosomal function 
and clear dysfunctional mitochondria, and induce breast 
cancer cell apoptosis. In addition, ART was found to have 
a stronger inhibitory effect on drug‑resistant breast cancer 
cells (A549/TAX and MCF‑7/ADR) with higher lysosomal 
functional activity (101).

Ovarian cancer. Ovarian cancer is the seventh most common 
type of malignant neoplasm in women and the eighth cause 
of mortality (102‑104). Most patients with ovarian cancer are 
typically diagnosed at an advanced stage of the disease (105). 
Ovarian cancer is treated with platinum chemotherapy 
following surgical resection (106). However, the recurrence 
rate is high (107,108) and the survival rates of ovarian cancer 
with International Federation of Gynecology and Obstetrics 
stage III and IV are only 10‑30% (109). ART has been found 
to significantly reduce the expression of VEGF in the HO‑8910 
human ovarian cancer cell line, as well as that of KDR/flk‑1 
(VEGF receptor) in endothelial cells and HO‑8910 cells, thereby 
significantly inhibiting angiogenesis in a dose‑dependent form. 
Additionally, ART resulted in reduced xenograft tumor growth in 
nude mice, with no clear toxicity to the animal (110). ART could 
reduce the total amount of RAD51 and the formation of RAD51 
foci in ovarian cancer cells sustaining DNA damage. Moreover, 
the downregulation of RAD51 conferred ovarian cancer cells 
an increased sensitivity to cisplatin (111). ART combined 
with cisplatin can synergistically induce DNA double‑strand 
breaks and inhibit the proliferation of the HO8910 and SKOV‑3 
human ovarian cancer cell lines (111). ART induced the 
production of ROS and reduced proliferation in HEY1, HEY2 
and SKOV‑3 ovarian cancer cells, which were associated with 
downregulation in the expression levels of regulatory proteins 
of the cell cycle, including cyclin D3, CDKs (CDK4, CDK2, and 
CDK1), Rb, E2F‑1 and CDC25C, while the tumor suppressor 
p21WAF1/CIP1, as well as phosphorylated Chk2 kinase which 
is important in the DNA damage response and an inhibitor of 
the CDC25 phosphatases were upregulated (70).

Esophageal cancer. Esophageal cancer (EC) is a common 
malignancy and has a high incidence rate in China (112). 
Although therapeutic approaches have improved, the 5‑year 
survival of EC is <20% (113). ART can induce apoptosis and 
cell cycle arrest in the Eca109 and Ec9706 EC cell lines by 
upregulating Bax and caspase‑3 and reducing mitochondrial 
membrane potential, as well as Bcl‑2 and CDC25A expression 
in a concentration‑dependent manner (72). In addition, an 
in vivo study showed that ART produced a dose‑dependent 
Eca109‑transplanted tumor regression in Balb/c nude mice, 
with little side effects. These results revealed that CDC25A 
was a molecular target of ART and that ART could inhibit the 
growth of EC cells by inducing apoptosis and G0/G1cell cycle 
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arrest (72). Fei et al (42) demonstrated that ART inhibited 
the proliferation of EC cells, enhanced radiosensitivity of 
TE‑1 cells in vitro and enhanced the effect of apoptosis 
induced by irradiation in TE‑1 cells by upregulating P21 and 
downregulating the expression of cyclin D1, RAD51, RAD54, 
Ku70 and Ku86 protein of irradiated TE‑1 cells. Moreover, ART 
also could aggravate DNA damage of EC cells and prolong the 
formation of γ‑H2AX foci induced by IR in TE‑1 cells. The 
results indicated that ART may be a promising radiosensitizer 
for the treatment of EC. In another study, Wang et al (73) 
found that ART can reverse doxorubicin resistance in EC by 
downregulating the expression of ATP‑binding cassette G2 in 
Eca109 cells. ART was reported to inhibit the proliferation, 
migration and invasion of KYSE‑150 esophageal squamous 
cell carcinoma cells by suppressing cell elasticity and 
increasing adhesion; ART also may increase the apoptosis rate 
by altering the cytoskeleton of KYSE‑150 cells (114).

Gastric cancer. Gastric cancer is the fourth leading cause of 
cancer‑related mortality in the world, with a 5‑year survival 
rate of <40% (115,116). ART can inhibit the proliferation 
of the gastric cancer cell lines SGC‑7901, BGC‑823 and 
AGS in a concentration‑dependent manner, BGC‑823 cells 
treated with ART exhibited calcium overload, downregulated 
expression levels of VEGF and upregulated expression 
levels of calpain‑2 (117). ART treatment can also inhibit the 
proliferation of the SGC‑7901 gastric adenocarcinoma cell 
line and induce apoptosis; the mechanism may be associated 
with Bax and caspase‑3 upregulation and CDC25A and Bcl‑2 
downregulation (74). In addition, ART could prevent the 
growth of Helicobacter pylori and gastric cancer cells, inhibit 
the adhesion of Helicobacter pylori to these cells and reduce 
Helicobacter pylori‑enhanced ROS production. Moreover, 
ART significantly reduces the number of tumor nodules and 
tumor size in a gastric cancer mouse model by inhibiting the 
NF‑κB signaling pathway (118).

Colorectal cancer. Colorectal cancer (CRC) is one of the most 
common types of cancer worldwide and has incidence and 
mortality rates globally (119,120). ART was found to inhibit 
CRC proliferation and promote apoptosis in a dose‑dependent 
manner to significantly suppress the growth of colorectal 
tumors, decrease the physiological activity of cancer and 
delay spontaneous liver metastasis in the CLY CRC cell line. 
These anticancer effects were associated with the membrane 
translocation of β‑catenin and the inhibition of unrestricted 
Wnt/β‑catenin signaling (121). In addition, ART can reverse 
the immunosuppression by downregulating the concentrations 
of TGF‑β1 and IL‑10 in Colon26 and RKO CRC cells (122). 
Jiang et al (76) found that ART induced apoptosis by increasing 
the protein levels of cleaved caspase‑3, poly‑ADP ribose 
polymerase (PARP), caspase‑9 and Bax protein levels, while 
decreasing the levels of LC3 and beclin‑1 in HCT116 colon 
cancer cells. ART can reduce the levels of oxidative stress 
and inflammatory markers, downregulate cyclo‑oxygenase‑2, 
induce nitric oxide (NO) synthase, NF‑κB and IF‑1β and 
reduce the risk of colon cancer (77).

Lung cancer. Lung cancer is the most common cancer in the 
world and the leading cause of cancer death (123), which has an 

overall 5‑year survival rate of ~15% (124). Despite advances in 
treatment, progressive NSCLC still severely limits survival and 
requires new therapeutic compounds (125). ART can significantly 
inhibit the invasion and migration of NSCLC cells (H1395, A549, 
LXF289 and H460 cells) by downregulating the transcription 
of urokinase‑type plasminogen activator, MMP‑2 and MMP‑7, 
whilst inhibiting AP‑1 and NF‑κB‑transactivation (126). In 
addition, ART promotes radiosensitivity in A549 cells in vitro 
and in vivo, possibly by inducing cell cycle arrest at the G2/M 
phase through the NO signaling pathway (127). Wang et al (128) 
found that ART could inhibit cell migration by upregulating 
the expression of the epithelial marker E‑cadherin in A549 
and H1975 NSCLC cell lines. In another study, ART could 
inhibit the invasion of A549 cells, and the mechanism may be 
associated with the reduced expression of intercellular adhesion 
molecule‑1 and MMP‑9 (129). Furthermore, ART inhibits the 
proliferation of A549 and H1299 cells by arresting the cell 
cycle at the G1 phase and suppresses lung tumor progression 
by inhibiting the Wnt/β‑catenin pathway (130). In A549 cells, 
ART combined with cisplatin blocks the cell cycle at the G2/M 
phase and induces apoptosis by upregulating the expression 
of Bax, p53, p21, caspase‑3, caspase‑7 and caspase‑9, whilst 
synergistically regulating the activity of the MAPK pathway by 
downregulating p‑P38, p‑JNK and p‑ERK levels, which results 
in potentiated effects against cancer cell proliferation on A549 
cells (131).

Liver cancer. Liver cancer is highly malignant and insensitive 
to cytotoxic chemotherapy, and is associated with a very 
poor patient prognosis (132,133). ART can activate caspase‑3, 
increase the Bax/Bcl‑2 ratio and PARP, whilst downregulating 
mouse double minute 2, which leads to induced apoptosis on 
human hepatocellular carcinoma (HCC) cells but had little 
effect on normal cells (134). The anticancer effects of ART 
nanoliposomes on human HepG2 cells was stronger than 
those mediated by ART active pharmaceutical ingredient 
at the same concentration (135). ART may function as a 
potential inhibitor of STAT3 in HCC cells to regulate STAT3 
targets, including caspase‑3, Bcl‑xl and survivin, interfere 
with STAT3 dimerization and inhibition of both constitutive 
and IL‑6‑inducible STAT3, leading to cell apoptosis 
in vitro (78). Jing et al (30) also revealed that ART could 
inhibit phosphorylation of AKT and mTOR significantly, and 
induce apoptosis in HCC (SK‑hep1 and SM‑7721 cell lines) by 
inhibiting the PI3K/AKT/mTOR pathway. In addition, ART 
combined with sorafenib (which is a novel multi‑targeted oral 
drug for the treatment of cancer) further increased the apoptosis 
of HCC cells by dual inhibition of both RAF/RAF/MAPK 
pathway and PI3K/AKT/mTOR pathway. Thus, the study 
identified a potential treatment strategy combining ART with 
sorafenib for the treatment of advanced HCC.

Other tumors. In a previous study, ART has been reported 
to induce lactate dehydrogenase release and cell death in 
necrosis‑sensitive cholangiocarcinoma (136). Wang et al (137) 
found that ART could significantly inhibit proliferation in the 
Burkitt lymphoma Raji cell line, where it induced apoptosis 
and autophagy. The combination of ART and bromocriptine 
can synergistically promote apoptosis by inhibiting miR‑200c 
expression and increasing that of PTEN in lactinomas (61). 
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Chauhan et al (138) found that ART induced ROS production 
and subsequent cell death in a receptor‑interacting protein 
1‑dependent manner in human renal carcinoma. ART exerted a 
potent antiproliferative effect on polyomavirus‑positive Merkel 
cell carcinoma (MCC) cells with good overall tolerance and 
induced ferroptosis (139). In addition, ART also significantly 
suppressed the growth of established MCC tumors in 
xenotransplanted mice, suggesting that ART may be used for 
the treatment of MCC (138). In another study, ART blocked the 
Wnt/catenin pathway to inhibit the proliferation, migration and 
invasion of uveal melanoma cells (primary 92.1 and metastatic 
Omm2.3 UM cells), mainly by suppressing the phosphorylation 
of GSK3β at Ser9 and decreasing the protein levels of β‑catenin 
and its downstream targets (c‑Myc and cyclin D1) (140). 
Wang et al (141) found that ART decreased androgen receptor 
(AR) expression, increased the expression and the catalytic 
activity of DNA methyltransferase3b (DNMT3b) in 22rv1 
cells either in transplanted mice or in vitro. ART can suppress 
tumor growth of prostatic cancer cells through AR‑DNMT3b 
pathway, suggesting it may be used for the treatment of prostate 
cancer in the future. Yang et al (142) found that ART induced 
mitochondrial dysfunction and cell apoptosis in the WERI‑Rb1 
and Y79 human retinoblastoma cell lines and in the ARPE‑19 
human retinal pigment epithelium cell line by upregulating 
Kruppel‑like factor 6 expression, increasing the Bax/Bcl‑2 
ratio, promoting the release of cytochrome c and stimulating the 
cleavage of caspase‑9 and ‑3. Roh et al (143) demonstrated that 
ART could induce ferroptosis in head and neck (HNC) cells 
via cellular glutathione depletion and ROS accumulation, and 
ART sensitivity decreased in some cisplatin‑resistant HNCs 
as a result of Nrf2‑ARE pathway activation. Berköz et al (144) 
suggested that ART treatment could decrease cell migration, 
invasion and colony formation in the A375 human melanoma 
cell line, possibly by inhibiting STAT3, Src activation and the 
protein expression of STAT3‑associated molecules, including 
MMP‑2, MMP‑9, myeloid‑cell leukemia 11, Bcl‑xl, VEGF and 
Twist.

5. Summary and perspectives

Cancer is one of the most life‑threatening diseases. With 
the increasing prevalence of cancer, the development of 
anticancer agents has become a key field of clinical and 
scientific research. Developments in medical science 
and technology have enabled the extraction of bioactive 
components from Traditional Chinese medicines for research 
due to their reported anticancer effects and lack of adverse 
reactions. ART has been demonstrated to be effective against 
leukemia, breast cancer, gastrointestinal tumors and other 
types of cancer (8,23,145). Importantly, since it is a drug that 
is already being used for the treatment of malaria, ART has a 
reliable safety record for clinical use. Although the amount of 
clinical data regarding the use of ART as an anticancer drug 
remains limited, preliminary results have been encouraging 
in terms of efficacy and tolerance (22). Combination therapy 
should be a key consideration in the future. In addition, 
development of modified derivatives of ART after structural 
modifications or modifying the treatment regimen to 
optimize the efficacy and toxicity profile are also possible 
directions for future research.

To conclude, existing information provides evidence 
supporting the use of ART as an anticancer agent. However, 
data from systematic in vivo animal and human studies are 
required to improve our understanding of the anticancer 
effects and mechanism of action of ART in the future.
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