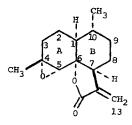
68. The Structure and Absolute Configuration of Arteannuin B

by Milan R. Uskoković, Thomas H. Williams and John F. Blount


Chemical Research Department, Hoffmann-La Roche Inc., Nutley, New Jersey 07110 USA

(5. II. 74)

The recent publication of Stefanović et al. [1] describing the structure of arteannuin B prompted us to disclose our results, which also produced a structure of this compound. A generous sample of arteannuin B, isolated from Artemisia annua L. [1], was received from Prof. Stefanović for a collaborative effort in structural investigation. After recrystallization from ether, the sample (m. p. 152–152.5°) exhibited a rotation of $[\alpha]_D^{25} = -72.2^\circ$ (c = 1.025, $CH_3OH)^1$). The high resolution mass spectrum (m/e 248.1418, M^+) and elemental analysis (C 72.35, H 8.09%) indicated that the molecular formula was $C_{15}H_{20}O_3$. Spectral evidence including an X-ray analysis and consideration of the biogenetic scheme proposed by Andersen [2] led to the structure and absolute configuration 1 $[4\alpha,5\alpha$ -epoxy- 6α -hydroxy- 10α -cadin-11(13)-en-12-oic acid lactone] for this natural product.

The IR. spectrum in chloroform exhibited absorptions for a γ -lactone at 1775, an epoxide at 950–1200, and a double bond at 1665 cm⁻¹. The last functionality was also indicated to be part of a conjugated lactone grouping by an UV. absorption at 204 nm ($\varepsilon = 13,700$)²). The presence of the unsaturated γ -lactone and its absolute configuration were supported by rotational data: ORD. (0.11% solution in CH₃OH) $\Phi_{\min}^{256} = -2801^{\circ}$, $\Phi_{\min}^{255} = 0^{\circ}$, $\Phi_{\max}^{214} = +9018^{\circ}$; CD. (the same solution) $\Theta_{\min}^{256} = -4545^{\circ}$. These data compare favorably with the *trans*-fused α -methylene- γ -butyrolactone moiety characteristic of many naturally occurring sesquiterpenes [3].

The trans-configuration of the lactone was also evident from NMR. spectrum [CDCl₃, 220 MHz, (CH₃)₄Si, δ -values]: 2.72 for allylic C(7)-proton, a doublet of quartets, with $J_{7,8\beta}=12$ Hz (axial-axial), $J_{7,8\alpha}=3$ Hz (axial-equatorial), $J_{7,13}=3$ Hz

(perpendicular allylic, confirmed by decoupling); 5.44 and 6.14 for C(13)-methylene protons, two doublets each with $J_{7,13}=3$ Hz. Since no NMR, signal for a proton on a carbon bearing the ether oxygen of the lactone was observed, the carbon atom C(6) had to be tertiary.

¹⁾ Reported [1]: $[\alpha]_D^{20} = -6^{\circ}$ (no solvent indicated).

²) Reported [1]: 215 nm (ε 5820).

The NMR. spectrum also indicated a secondary methyl group at 0.98 as a doublet with $J=6~\mathrm{Hz}$; a methyl group on the epoxide ring at 1.32 as a singlet; and a proton on the epoxide ring at 2.67. Since the last proton exhibited a singlet, it was assigned to a carbon linked to two other carbons bearing no protons.

These data led us to postulate the structure 1 for arteannuin B without specifying the stereochemistry at C(1), C(4), C(5), and C(10). The AB-ring junction and the configuration of the C(10) methyl group were subsequently established by an analysis of the NMR. signal for the C(1) proton. This proton gave a doublet of quartets at 2.05 resulting from one large and three small coupling constants: $J_{1,10\beta} = 12.5$ Hz (axial-axial), $J_{1,2\beta} = 3$ Hz (equatorial-equatorial), $J_{1,2\alpha} = 3$ Hz (equatorial-axial), and $J_{1,3\alpha} = 3$ Hz (W-coupling). This pattern is compatible only with a cis-ring junction and a 10α -methyl group. The $1,3\alpha$ -W coupling is indicative of a half-chair conformation of the Ring A. The stereochemistry of the last two centers, C(4) and C(5), could only be established by an X-ray analysis. A stereodrawing of the molecule is presented in the figure.

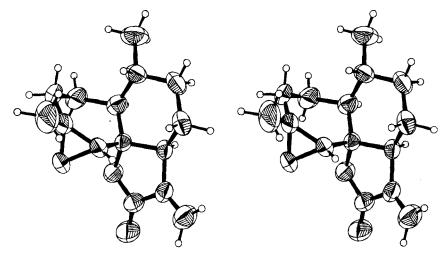


Fig. 1. Stereodrawing of 1. The anisotropic atoms are shown scaled to the 50% probability level. The hydrogens are shown as spheres of an arbitrary size.

Crystals of 1 are orthorhombic, space group $P2_12_12_1$, with unit cell parameters a=9.034 (12), b=12.266 (12), c=12.290 (15) Å. The calculated density is $D_c=1.211$ g cm⁻³ for Z=4. Three dimensional intensity data were measured on a Hilger-Watts model Y290 four circle diffractometer. Nickel filtered Cu K α radiation and pulse height discrimination were used. The approximate dimensions of the crystals were $0.20\times0.20\times0.45$ mm; no absorption corrections were made ($\mu=6.8$ cm⁻¹). Of the 1610 accessible reflections with $\theta<76^\circ$, 1091 had intensities significantly greater than background.

The structure was solved by a multiple solution procedure [4]. All non-hydrogen atoms were located from the E-map calculated for the phase set with the highest figure-of-merit. The hydrogen atom positions were obtained from a difference Fourier calculated after preliminary refinement of the structure. The final refine-

ment was carried out by full matrix least squares with anisotropic thermal parameters for all atoms except the hydrogens which have isotropic temperature factors. The final unweighted R index is 0.041 for the 1091 observed reflections. A difference Fourier based on the final parameters has no features greater than $0.2 \,\mathrm{e}\,\mathrm{\AA}^{-3}$ in magnitude.

REFERENCES

- [1] D. Jeremić, A. Johić, A. Behbud, & M. Stefanović, Tetrahedron Letters 1973, 3039.
- [2] N. H. Andersen, Phytochemistry 9, 145 (1970).
- [3] T. G. Waddell, W. Stöcklin, & T. A. Gassman, Tetrahedron Letters 1969, 1313.
- [4] G. Germain, P. Main & M. M. Woolfson, Acta Cryst. B26, 274 (1970).

69. The Structure of Arteannuin B and its Acid Hydrolysis Product

by David G. Leppard1), Max Rey and André S. Dreiding

Organisch-chemisches Institut der Universität Zürich, Rämistrasse 76, 8001 Zürich

Rita Grieb

Institut für Kristallographie und Petrographie der Eidgenössischen Technischen Hochschule, Sonneggstrasse 5, 8006 Zürich

(8. II. 74)

Zusammenfassung. Die Struktur des Sesquiterpen-y-Laktons Arteannuin B (1) wurde röntgenographisch und diejenige seines Hydrolyseproduktes (2) durch eine vollständige Analyse des NMR.-Spektrums ermittelt.

1. Introduction. – The isolation of the sesquiterpene lactone arteannuin B from Artemisia Annua L. and several conversions including the formation of an acid hydrolysis product have recently been reported by Stefanović et al. [1]. Certain arguments were presented there in preliminary form which led to a proposal of structures 1 and 2 for arteannuin B and its hydrolysis product. We report here our own investigation of these two compounds 2), which confirm these structure proposals. First a detailed argument will be presented for the structure of the acid hydrolysis product 2, based

$$CH_3 \longrightarrow OH \longrightarrow H$$

$$CH_3 \longrightarrow OH \longrightarrow H$$

$$CH_3 \longrightarrow OH \longrightarrow H$$

$$OH \longrightarrow H$$

¹⁾ Royal Society Post-doctoral Fellow, 1972–73.

²⁾ We thank Prof. Stefanović for the samples of Arteannuin B and its hydrolysis product.